setwd('xx_result')
library("DESeq2")
directory <-'xx/06_featurecounts'
directory
sampleFiles <- grep("wy",list.files(directory),value=TRUE)
sampleFiles
sampleCondition <- c("Het","Het","KO","KO","KO")
sampleCondition
sampleTable <- data.frame(sampleName= sampleFiles,fileName = sampleFiles,condition = sampleCondition)
sampleTable
dds <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,directory = directory,design= ~ condition)
dds
dds <- dds [ rowSums(counts(dds)) > 1, ]
#PCA#
rld<-rlog(dds)
plotPCA(rld)
dds<-DESeq(dds)
res <- results(dds)
head(res)
summary(res)
resOrdered <- res[order(res$padj),]
resOrdered=as.data.frame(resOrdered)
head(resOrdered)
resOrdered=na.omit(resOrdered)
DEmiRNA=resOrdered[abs(resOrdered$log2FoldChange)>log2(1.5) & resOrdered$padj <0.01 ,]
head(resOrdered)
write.csv(resOrdered,"hisat2_samtools_htseq_DESeq2_output.csv")
#MA图#
library("geneplotter")
plotMA(res,main="DESeq2",ylim=c(-2,2))
#heatmap#
select<-order(rowMeans(counts(dds,normalized=TRUE)),decreasing = TRUE)[1:666]
nt<-normTransform(dds)
log2.norm.counts<-assay(nt)[select,]
df<-as.data.frame(colData(dds))
library(pheatmap)
pheatmap(log2.norm.counts,cluster_rows = TRUE,show_rownames = FALSE,cluster_cols = TRUE,annotation_col = df)