UFLDL是吴恩达团队编写的较早的一门深度学习入门,里面理论加上练习的节奏非常好,每次都想快点看完理论去动手编写练习,因为他帮你打好了整个代码框架,也有详细的注释,所以我们只要实现一点核心的代码编写工作就行了,上手快!
我这里找不到新版对应这块的中文翻译了,-_-,这是最后一个练习了,之后就可以学cs231n了,得加快啊!
第十一节是:Self Taught Learning(自我学习)
feedfowardRICA.m
function features = feedfowardRICA(filterDim, poolDim, numFilters, images, W)
% feedfowardRICA Returns the convolution of the features given by W with
% the given images. It should be very similar to cnnConvolve.m+cnnPool.m
% in the CNN exercise, except that there is no bias term b, and the pooling
% is RICA-style square-square-root pooling instead of average pooling.
%
% Parameters:
% filterDim - filter (feature) dimension
% numFilters - number of feature maps
% images - large images to convolve with, matrix in the form
% images(r, c, image number)
% W - W should be the weights learnt using RICA
% W is of shape (filterDim,filterDim,numFilters)
%
% Returns:
% features - matrix of convolved and pooled features in the form
% features(imageRow, imageCol, featureNum, imageNum)
global params;
numImages = size(images, 3);
imageDim = size(images, 1);
convDim = imageDim - filterDim + 1; % 20
features = zeros(convDim / poolDim, ...
convDim / poolDim, numFilters, numImages); % 10 * 10 * 32 * numImages
poolMat = ones(poolDim);
% Instructions:
% Convolve every filter with every image just like what you did in
% cnnConvolve.m to get a response.
% Then perform square-square-root pooling on the response with 3 steps:
% 1. Square every element in the response
% 2. Sum everything in each pooling region
% 3. add params.epsilon to every element before taking element-wise square-root
% (Hint: use poolMat similarly as in cnnPool.m)
for imageNum = 1:numImages
if mod(imageNum,500)==0
fprintf('forward-prop image %d\n', imageNum);
end
for filterNum = 1:numFilters
% filter = zeros(8,8); % You should replace this
% Form W, obtain the feature (filterDim x filterDim) needed during the
% convolution
%%% YOUR CODE HERE %%%
filter = squeeze(W(:,:,filterNum));
% Flip the feature matrix because of the definition of convolution, as explained later
filter = rot90(squeeze(filter),2);
% Obtain the image
im = squeeze(images(:, :, imageNum));
% resp = zeros(convDim, convDim); % You should replace this
% Convolve "filter" with "im" to find "resp"
% be sure to do a 'valid' convolution
%%% YOUR CODE HERE %%%
resp = conv2(im,filter,'valid');
% Then, apply square-square-root pooling on "resp" to get the hidden
% activation "act"
act = zeros(convDim / poolDim, convDim / poolDim); % You should replace this 20/5
%%% YOUR CODE HERE %%%
resp1 = resp .^2;
for i = 1: convDim / poolDim
for j = 1: convDim / poolDim
temp = conv2(resp1,poolMat,'valid');
act(i,j) = temp(poolDim*(i-1)+1,poolDim*(j-1)+1);
act(i,j) = sqrt(act(i,j) + params.epsilon);
end
end
features(:, :, filterNum, imageNum) = act;
end
end
end
脚本stlExercise.m
%% CS294A/CS294W Self-taught Learning Exercise
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% self-taught learning. You will need to complete code in feedForwardAutoencoder.m
% You will also need to have implemented sparseAutoencoderCost.m and
% softmaxCost.m from previous exercises. 好像都没有对应的,这应该是老版的
%
%% ======================================================================
% STEP 0: Here we provide the relevant parameters values that will
% allow your RICA to get good filters; you do not need to
% change the parameters below.
clear;close all;
addpath(genpath('E:\SummerCourse\UFLDL\stanford_dl_ex-master\common')) % path to minfunc
imgSize = 28;
global params;
params.patchWidth=9; % width of a patch
params.n=params.patchWidth^2; % dimensionality of input to RICA
params.lambda = 0.0005; % sparsity cost
params.numFeatures = 32; % number of filter banks to learn
params.epsilon = 1e-2;
%% ======================================================================
% STEP 1: Load data from the MNIST database
%
% This loads our training and test data from the MNIST database files.
% We have sorted the data for you in this so that you will not have to
% change it.
% Load MNIST database files
mnistData = loadMNISTImages('E:\SummerCourse\UFLDL\common\train-images-idx3-ubyte'); % 784*60000
mnistLabels = loadMNISTLabels('E:\SummerCourse\UFLDL\common\train-labels-idx1-ubyte'); % 60000*1
numExamples = size(mnistData, 2);
% 50000 of the data are pretended to be unlabelled
unlabeledSet = 1:50000;
unlabeledData = mnistData(:, unlabeledSet);
% the rest are equally splitted into labelled train and test data
trainSet = 50001:55000;
testSet = 55001:60000;
trainData = mnistData(:, trainSet);
trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-10
% only keep digits 0-4, so that unlabelled dataset has different distribution
% than the labelled one.
removeSet = find(trainLabels > 5);
trainData(:,removeSet)= [] ;
trainLabels(removeSet) = [];
testData = mnistData(:, testSet);
testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-10
% only keep digits 0-4
removeSet = find(testLabels > 5);
testData(:,removeSet)= [] ;
testLabels(removeSet) = [];
% Output Some Statistics
fprintf('# examples in unlabeled set: %d\n\n', size(unlabeledData, 2));
fprintf('# examples in supervised training set trainData: %d\n\n', size(trainData, 2));
fprintf('# examples in supervised testing set testData: %d\n\n', size(testData, 2));
%% ======================================================================
% STEP 2: Train the RICA
% This trains the RICA on the unlabeled training images.
% Randomly initialize the parameters
randTheta = randn(params.numFeatures,params.n)*0.01; % 1/sqrt(params.n); 32*81
randTheta = randTheta ./ repmat(sqrt(sum(randTheta.^2,2)), 1, size(randTheta,2));
randTheta = randTheta(:); % 2591
% subsample random patches from the unlabelled+training data,但是新版教程上说只拿unlabelled的
% patches = samplePatches([unlabeledData,trainData],params.patchWidth,200000); % 81*200000
patches = samplePatches(unlabeledData,params.patchWidth,200000); % 81*200000
%configure minFunc
options.Method = 'lbfgs';
options.MaxFunEvals = Inf;
options.MaxIter = 1000;
% You'll need to replace this line with RICA training code
% opttheta = randTheta;
% Find opttheta by running the RICA on all the training patches.
% You will need to whitened the patches with the zca2 function
% then call minFunc with the softICACost function as seen in the RICA exercise.
%%% YOUR CODE HERE %%%
patches = zca2(patches);
m = sqrt(sum(patches.^2) + (1e-8));
x = bsxfunwrap(@rdivide,patches,m);
% 这里之前因为softICACost.m函数里面的lambda写的是1,太大了,所以没迭代几次就停下来了
% 改小一点以后就可以了,正确率也上升了,达到了教程中的标准,看W'的图也能看出大概来,
tic;
[opttheta, cost, exitflag] = minFunc( @(theta) softICACost(theta, x, params), randTheta, options);
fprintf('# Optimization took: %f seconds.\n', toc);
% reshape visualize weights
W = reshape(opttheta, params.numFeatures, params.n); % 32*81
display_network(W');
%% ======================================================================
%% STEP 3: Extract Features from the Supervised Dataset
% pre-multiply the weights with whitening matrix, equivalent to whitening
% each image patch before applying convolution. V should be the same V
% returned by the zca2 when you whiten the patches.
% W = W*V; % V是啥,一脸懵逼,先注释掉再说
% reshape RICA weights to be convolutional weights.
W = reshape(W, params.numFeatures, params.patchWidth, params.patchWidth);
W = permute(W, [2,3,1]); % patchWidth * patchWidth * numFeatures
% setting up convolutional feed-forward. You do need to modify this code.
filterDim = params.patchWidth;
poolDim = 5;
numFilters = params.numFeatures;
trainImages=reshape(trainData, imgSize, imgSize, size(trainData, 2));
testImages=reshape(testData, imgSize, imgSize, size(testData, 2));
% Compute convolutional responses
% TODO: You will need to complete feedfowardRICA.m ,这个出来的是 经过卷积,池化后的隐层特征
trainAct = feedfowardRICA(filterDim, poolDim, numFilters, trainImages, W);
fprintf('# 从2500回到500我以为出错了,结果是下一个feedfowardRICA\n');
testAct = feedfowardRICA(filterDim, poolDim, numFilters, testImages, W);
% reshape the responses into feature vectors
featureSize = size(trainAct,1)*size(trainAct,2)*size(trainAct,3); % 512
trainFeatures = reshape(trainAct, featureSize, size(trainData, 2)); % 512*2538
testFeatures = reshape(testAct, featureSize, size(testData, 2)); %512*2520
%% ======================================================================
%% STEP 4: Train the softmax classifier
numClasses = 5; % doing 5-class digit recognition
% initialize softmax weights randomly
randTheta2 = randn(numClasses, featureSize)*0.01; % 1/sqrt(params.n);
randTheta2 = randTheta2 ./ repmat(sqrt(sum(randTheta2.^2,2)), 1, size(randTheta2,2));
randTheta2 = randTheta2';
randTheta2 = randTheta2(:);
% Use minFunc and softmax_regression_vec from the previous exercise to
% train a multi-class classifier.
options.Method = 'lbfgs';
options.MaxFunEvals = Inf;
options.MaxIter = 300;
% optimize
%%% YOUR CODE HERE %%%
[opt_theta, ~, ~] = minFunc(@softmax_regression_vec, randTheta2, options, trainFeatures, trainLabels);
opt_theta = reshape(opt_theta,featureSize,numClasses);
opt_theta = opt_theta'; % numClasses * featureSize
%%======================================================================
%% STEP 5: Testing
% Compute Predictions on tran and test sets using softmaxPredict
% and softmaxModel(哪有啊,这是老版的)
%%% YOUR CODE HERE %%%
[~,train_pred] = max(opt_theta * trainFeatures); % opt_theta:2560*1(跟randTheta2的size一样) trainFeatures:512*2538
[~,pred] = max(opt_theta * testFeatures); % testFeatures:512*2520
% Classification Score
fprintf('Train Accuracy: %f%%\n', 100*mean(train_pred(:) == trainLabels(:))); % trainLabels:1*2538
fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:))); % testLabels:1*2520
% You should get 100% train accuracy and ~99% test accuracy. With random
% convolutional weights we get 97.5% test accuracy. Actual results may
% vary as a result of random initializations
运行结果:
之前的softICACost.m中的 lambda = 1参数没调好,调成0.1以后就能跟教程里面准确率一样了:
self-taught learning result
教程原话:
If you’ve done all the steps correctly, you should get 100% train accuracy and ~99% test accuracy.
有理解不到位之处,还请指出,有更好的想法,可以在下方评论交流!