多key业务,数据库水平切分架构一次搞定

数据库水平切分是一个很有意思的话题,不同业务类型,数据库水平切分的方法不同。

本篇将以“订单中心”为例,介绍“多key”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践。


一、什么是“多key”类业务

所谓的“多key”,是指一条元数据中,有多个属性上存在前台在线查询需求。


订单中心业务分析

订单中心是一个非常常见的“多key”业务,主要提供订单的查询与修改的服务,其核心元数据为:

Order(oid, buyer_uid, seller_uid, time,money, detail…);

其中:

oid为订单ID,主键

buyer_uid为买家uid

seller_uid为卖家uid

time, money, detail, …等为订单属性

数据库设计上,一般来说在业务初期,单库单表就能够搞定这个需求,典型的架构设计为:

order-center:订单中心服务,对调用者提供友好的RPC接口

order-db:对订单进行数据存储


随着订单量的越来越大,数据库需要进行水平切分,由于存在多个key上的查询需求,用哪个字段进行切分,成了需要解决的关键技术问题:

如果用oid来切分,buyer_uid和seller_uid上的查询则需要遍历多库

如果用buyer_uid或seller_uid来切分,其他属性上的查询则需要遍历多库

总之,很难有一个完全之策,在展开技术方案之前,先一起梳理梳理查询需求。


二、订单中心属性查询需求分析

在进行架构讨论之前,先来对业务进行简要分析,看哪些属性上有查询需求。


前台访问,最典型的有三类需求:

订单实体查询:通过oid查询订单实体,90%流量属于这类需求

用户订单列表查询:通过buyer_uid分页查询用户历史订单列表,9%流量属于这类需求

商家订单列表查询:通过seller_uid分页查询商家历史订单列表,1%流量属于这类需求


前台访问的特点:吞吐量大,服务要求高可用,用户对订单的访问一致性要求高,商家对订单的访问一致性要求相对较低,可以接受一定时间的延时。


后台访问,根据产品、运营需求,访问模式各异:

按照时间,架构,商品,详情来进行查询

后台访问的特点:运营侧的查询基本上是批量分页的查询,由于是内部系统,访问量很低,对可用性的要求不高,对一致性的要求也没这么严格,允许秒级甚至十秒级别的查询延时。


这两类不同的业务需求,应该使用什么样的架构方案来解决呢?


三、前台与后台分离的架构设计

如果前台业务和后台业务公用一批服务和一个数据库,有可能导致,由于后台的“少数几个请求”的“批量查询”的“低效”访问,导致数据库的cpu偶尔瞬时100%,影响前台正常用户的访问(例如,订单查询超时)。

前台与后台访问的查询需求不同,对系统的要求也不一样,故应该两者解耦,实施“前台与后台分离”的架构设计

前台业务架构不变,站点访问,服务分层,数据库水平切分。


后台业务需求则抽取独立的web/service/db来支持,解除系统之间的耦合,对于“业务复杂”“并发量低”“无需高可用”“能接受一定延时”的后台业务:

可以去掉service层,在运营后台web层通过dao直接访问数据层

可以不需要反向代理,不需要集群冗余

可以通过MQ或者线下异步同步数据,牺牲一些数据的实时性

可以使用更契合大量数据允许接受更高延时的“索引外置”或者“HIVE”的设计方案


解决了后台业务的访问需求,问题转化为,前台的oid,buyer_uid,seller_uid如何来进行数据库水平切分呢?

多个维度的查询较为复杂,对于复杂系统设计,可以逐步简化。


四、假设没有seller_uid

订单中心,假设没有seller_uid上的查询需求,而只有oid和buyer_uid上的查询需求,就蜕化为一个“1对多”的业务场景,对于“1对多”的业务,水平切分应该使用“基因法”。


再次回顾一下,什么是分库基因?

通过buyer_uid分库,假设分为16个库,采用buyer_uid%16的方式来进行数据库路由,所谓的模16,其本质是buyer_uid的最后4个bit决定这行数据落在哪个库上,这4个bit,就是分库基因。


也再次回顾一下,什么是基因法分库?

在订单数据oid生成时,oid末端加入分库基因,让同一个buyer_uid下的所有订单都含有相同基因,落在同一个分库上。


如上图所示,buyer_uid=666的用户下了一个订单:

使用buyer_uid%16分库,决定这行数据要插入到哪个库中

分库基因是buyer_uid的最后4个bit,即1010

在生成订单标识oid时,先使用一种分布式ID生成算法生成前60bit(上图中绿色部分)

将分库基因加入到oid的最后4个bit(上图中粉色部分),拼装成最终64bit的订单oid(上图中蓝色部分)


通过这种方法保证,同一个用户下的所有订单oid,都落在同一个库上,oid的最后4个bit都相同,于是:

通过buyer_uid%16能够定位到库

通过oid%16也能定位到库


五、假设没有oid

订单中心,假设没有oid上的查询需求,而只有buyer_uid和seller_uid上的查询需求,就蜕化为一个“多对多”的业务场景,对于“多对多”的业务,水平切分应该使用“数据冗余法”

如上图所示:

当有订单生成时,通过buyer_uid分库,oid中融入分库基因,写入DB-buyer库

通过线下异步的方式,通过binlog+canal,将数据冗余到DB-seller库中

buyer库通过buyer_uid分库,seller库通过seller_uid分库,前者满足oid和buyer_uid的查询需求,后者满足seller_uid的查询需求


数据冗余的方法有很多种:

服务同步双写

服务异步双写

线下异步双写(上图所示,是线下异步双写)


不管哪种方案,因为两步操作不能保证原子性,总有出现数据不一致的可能,高吞吐分布式事务是业内尚未解决的难题此时的架构优化方向,并不是完全保证数据的一致,而是尽早的发现不一致,并修复不一致


最终一致性,是高吞吐互联网业务一致性的常用实践。保证数据最终一致性的方案有三种:

冗余数据全量定时扫描

冗余数据增量日志扫描

冗余数据线上消息实时检测

这些方案细节在“多对多”业务水平拆分的文章里详细展开分析过,便不再赘述。


六、oid/buyer_uid/seller_uid同时存在

通过上述分析:

如果没有seller_uid,“多key”业务会蜕化为“1对多”业务,此时应该使用“基因法”分库:使用buyer_uid分库,在oid中加入分库基因

如果没有oid,“多key”业务会蜕化为“多对多”业务,此时应该使用“数据冗余法”分库:使用buyer_uid和seller_uid来分别分库,冗余数据,满足不同属性上的查询需求 

如果oid/buyer_uid/seller_uid同时存在,可以使用上述两种方案的综合方案,来解决“多key”业务的数据库水平切分难题


七、总结

任何复杂难题的解决,都是一个化繁为简,逐步击破的过程。


对于像订单中心一样复杂的“多key”类业务,在数据量较大,需要对数据库进行水平切分时,对于后台需求,采用“前台与后台分离”的架构设计方法

前台、后台系统web/service/db分离解耦,避免后台低效查询引发前台查询抖动

采用前台与后台数据冗余的设计方式,分别满足两侧的需求

采用“外置索引”(例如ES搜索系统)或者“大数据处理”(例如HIVE)来满足后台变态的查询需求


对于前台需求,化繁为简的设计思路,将“多key”类业务,分解为“1对多”类业务和“多对多”类业务分别解决:

使用“基因法”,解决“1对多”分库需求:使用buyer_uid分库,在oid中加入分库基因,同时满足oid和buyer_uid上的查询需求

使用“数据冗余法”,解决“多对多”分库需求:使用buyer_uid和seller_uid来分别分库,冗余数据,满足buyer_uid和seller_uid上的查询需求

如果oid/buyer_uid/seller_uid同时存在,可以使用上述两种方案的综合方案,来解决“多key”业务的数据库水平切分难题。


数据冗余会带来一致性问题,高吞吐互联网业务,要想完全保证事务一致性很难,常见的实践是最终一致性


任何脱离业务的架构设计都是耍流氓,共勉。


转自:沈剑的微信文章

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容

  • 转载:细聊冗余表数据一致性(架构师之路) 本文主要讨论四个问题: (1)为什么会有冗余表的需求 (2)如何实现冗余...
    meng_philip123阅读 1,189评论 1 5
  • 需要原文的可以留下邮箱我给你发,这里的文章少了很多图,懒得网上粘啦 1数据库基础 1.1数据库定义 1)数据库(D...
    极简纯粹_阅读 7,421评论 0 46
  • Sharding的基本思想其实就是采用分治的思想,要把一个数据库切分成多个部分放到不同的数据库(server)上,...
    jiangmo阅读 9,393评论 0 7
  • 转载自微信公众号【架构师之路】 本文,将介绍数据库架构设计中的一些基本概念,常见问题以及对应解决方案,为了便于读者...
    Javen205阅读 944评论 0 6
  • 文/玲子 图/花瓣网 日有所思,夜有所念。就算爱人睡在枕头边上,他依然会经常出现在我的梦里。 (一) 每一阵风过 ...
    晴暖幽草阅读 172评论 0 0