用sklearn 实践PCA降维

用sklearn 实践PCA

原文地址:

https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60

对于许多机器学习应用程序,它有助于可视化你的数据.可视化2或3维数据并不具有挑战性.但是,即使本教程的这一部分中使用的Iris数据集也是4维的.你可以使用PCA将4维数据缩减为2维或3维,以便你可以绘制并希望更好地理解数据.

加载Iris数据集

Iris数据集是scikit-learn附带的数据集之一,不需要从某个外部网站下载任何文件.下面的代码将加载iris数据集.

#将pandas导入为pd
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
#load dataset into Pandas DataFrame 
df = pd.read_csv(url,names = ['sepal length','sepal width','petal length','petal width','target'])
1.png

Original Pandas df (features + target)

标准化数据

PCA受比例影响,因此你需要在应用PCA之前缩放数据中的功能.使用StandardScaler可帮助你将数据集的特征标准化为单位比例(均值= 0和方差= 1),这是许多机器学习算法的最佳性能要求.如果你希望看到不会缩放数据的负面影响,scikit-learn会有一节介绍不标准化数据效果.

#来自sklearn.preprocessing导入StandardScaler
features = ['sepal length', 'sepal width', 'petal length', 'petal width']
#分离出特征
x = df.loc[:,features].values
#分离目标
y = df.loc[:,['target']].values
#标准化特征
x = StandardScaler().fit_transform(x)
2.png

标准化之前和之后的数组x(由pandas数据帧可视化)

PCA投影到2D

原始数据有4列(萼片长度,萼片宽度,花瓣长度和花瓣宽度).在本节中,代码将4维原始数据投影到2维.我应该注意,在减少维数之后,通常没有为每个主成分分配特定含义.新组件只是变体的两个主要维度.

#来自sklearn.decomposition导入PCA
pca = PCA(n_components = 2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents 
             ,columns = ['principal component 1','principal component 2'])
3.png

PCA并保持前两大主要组成部分

finalDf = pd.concat([principalDf,df [['target']]],axis = 1)

沿axis = 1连接DataFrame. finalDf是最终的DataFrame.

4.png

沿着列连接数据帧以在绘图之前生成finalDf

可视化2D投影

本节仅绘制二维数据.请注意下图中的类似乎彼此分开.

import matplotlib.pyplot as plt
fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1) 
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 2', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)
targets = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
colors = ['r', 'g', 'b']
for target, color in zip(targets,colors):
    indicesToKeep = finalDf['target'] == target
    ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1']
               , finalDf.loc[indicesToKeep, 'principal component 2']
               , c = color
               , s = 50)
ax.legend(targets)
ax.grid()
plt.show()
5.png

解释差异

解释的方差告诉你可以将多少信息(方差)归因于每个主要组件.这很重要,因为当你可以将4维空间转换为2维空间时,在执行此操作时会丢失一些方差(信息).通过使用属性explained_variance_ratio_,可以看到的是,第一主成分含有方差的72.77%和第二主成分含有方差的23.03%.这两个组件一起包含95.80%的信息.

pca.explained_variance_ratio_

array([ 0.72770452, 0.23030523])

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343