朴素贝叶斯VS逻辑回归

观点1:

http://blog.csdn.net/cjneo/article/details/45167223
1:朴素贝叶斯是生成模型,利用先验概率,条件概率,最有得到后验概率分布。
LR是判别模型,通过在训练数据集上最大化P(y|x)判断,不需要知道先验概率和条件概率
2:朴素贝叶斯 基于特征相互独立的假设,而LR则没有此假设,如果数据独立LR可以获得较好的模型,如果数据不满足条件独立假设,则可以调整参数,获得较好的模型。
3:数据量较少的时候,可以使用朴素贝叶斯法,因为先验概率和条件概率都是通过统计得到的,可以在O(log(n))个样本得到。对于LR,需要在整个参数空间进行线性搜索,需要O(n)个样本。

观点二:

相同点
Logistic regression和Naive bayes都是对特征的线性表达 # ,只是区别在于两者所fit的参数不同。

Logistic regression和Naive bayes建模的都是条件概率
,对所最终求得的不同类的结果有很好的解释性。而不像SVM,神经网络这样解释性不高。

不同点
Logistic regression在有相关性feature上面学习得到的模型在测试数据的performance更好。也就是说,logistic regression在训练时,不管特征之间有没有相关性,它都能找到最优的参数。而在Naive bayes中,由于我们给定特征直接相互独立的严格设定,在有相关性的feature上面学习到的权重同时变大或变小,它们之间的权重不会相互影响。从这方面来说,如果能够在对参数较好地控制,在损失项方面处理的很好的话,Logistic regression相对Naive bayes在应用时更不会限制在特征工程(feature engineering)上面。
Naive bayes的好处是我没有优化参数这一步,通过训练数据我直接得到一个counting table,这些有助于并行化。
Andrew Ng和Michael Jordan在2001年发了一篇NIPS短文《 On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes 》,他们把这两个模型用在各种数据集上面进行测试,最后得到在小数据上面Naive bayes可以取得更好的效果,随着数据的增多、特征维度的增大,Logistic regression的效果更好。这也是因为Naive bayes是生成模型,在有prior的情况下模型能够把数据fit的更好,而Logistic regression属于生成模型,目标驱动化,不去建模联合概率,通过训练数据直接预测输出,因此在数据足够多的情况下能够得到更好一些的效果。

作者: Yong Jiang
文章出处: http://sunshiningjiang.github.io/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容