Model Evaluation and Validation

You can find this article and source code at my GitHub

Testing

Two types of our problems

Think about a simple case... How well is my model doing with a regression problem?

It seems that, though the line in the right graph fits better to the original data points. But if we add one more new data point for testing purpose, the left one works better since it's more generalized.

How do we measure the generalization?

For a regression problem...

For a classification problem...


Notice that both models fit the training set well, but once we introduce the testing set, the model on the left makes less mistakes than the model on the right.

This issue can be handled easily in a Python package called "sklearn".

from sklearn.model_selection import train_test_split
X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.25) # 25% total samples will be split into the test set

A golden rule is...

Never use your testing data for training purpose.
That is, never let your model know anything about your testing data. Your model should not learn anything from the testing data.


Evaluation

There is a metric for classification problems called "confusion matrix"

You can fill the blank by yourself to see whether you understand this metric correctly.

The answers are 6, 1, 2 and 5 for True Positives, False Negatives, False Positives, and True Negatives, respectively.


Accuracy

We have a very basic method to calculate the accuracy...

Again, "sklearn" can do this simply with several lines of code

from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_predict)

Regression metrics

from sklearn.metrics import mean_absolute_error
from sklearn.linear_model import LinearRegression

classifier = LinearRegression()
classifier.fit(X_train, y_train)

guesses = classifier.predict(X_test)
error = mean_absolute_error(y_test, guesses)

But there is a problem with the mean absolute error (MAE) is that the formula of MAE is not differentiable, therefore it cannot be adopted to some common method we will use later such as the gradient descent.

An alternative method is the mean squared error (MSE).

from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression

classifier = LinearRegression()
classifier.fit(X_train, y_train)

guesses = classifier.predict(X_test)
error = mean_squared_error(y_test, guesses)

Another common metric we use here is the R2 score.

The formula is as below, and the error in the two figures is calculated with the MSE formula.

from sklearn.metric import r2_score

y_true = [1, 2, 3]
y_pred = [3, 2, 3]

r2_score(y_true, y_pred)

Type of Errors

Error due to bias (underfitting)

Error due to variance (overfitting)

There is the trade-off...


Model Complexity Graph


K-Fold Cross Validation

This is a very useful way to recycle our data...

With this algorithm, for example, in the above graph, we will go train our model 4 times with the different splitting result. And then we average the 4 results in order to find the final model.

"sklearn" is awesome!

from sklearn.model_selection import KFold

kf = KFold(12, 3)
for train_idx, test_idx in kf:
    print(train_idx, test_idx)

If we want to "eliminate" possible bias, we can also add randomized selection in the K-Fold algorithm.

"sklearn" is awesome AGAIN!

from sklearn.model_selection import KFold

kf = KFold(12, 3, shuffle=True)
for train_idx, test_idx in kf:
    print(train_idx, test_idx)

Thanks for reading. If you find any mistake / typo in this blog, please don't hesitate to let me know, you can reach me by email: jyang7[at]ualberta.ca

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容

  • 恐惧的最初来源于人类进化种的避险需求。心理上的恐惧其实和任何具体的、真正迫在眉睫的危险无关。心理上的恐惧总是源于“...
    王增利阅读 399评论 0 0
  • 今天佳娃老师给我们分享了财富是什么?财富包括了所有,精神财富,物质财富,我们身休每一个部位都是财富,包括健康、美丽...
    辛勒换成果阅读 213评论 0 0
  • 【日更123】 今天在看有关“概率论”的讲课视频,想补上曾经没有好好上过的课。要是在学生时代早知道会有这一天,那当...
    唐斩2086阅读 166评论 0 1