深度学习模型训练流程

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

工作中训练了很多的深度学习模型,目前到了上升到方法论的角度来看了。日常工作中有的人可能已经在遵循方法论做事,可能自己没有注意,有的人可能没有遵循方法论在做事,虽然可能最后的结果差不多,但花费的时间和精力应该会差别很大,当然这是我自己的感受。我们不必完全按照方法论来做,但基本流程跟方法论应该一致。

下面的具体步骤以图像分类,识别图像中的猫为例。

1. 问题定义

问题定义,“what,how,why”中的what,首先要弄清楚自己要干什么,然后调研相关的技术,确定解决方案。例如这一步中我的工作是进行图像分类,问题定义是图像分类——识别猫,相关的技术包括各种分类模型,各种深度学习框架。我选择的是BN-Inception + Caffe。

2. 确定评估标准

根据问题定义,确定了相关技术之后,不要着急动手去做,先确定评估标准,怎么评价模型的好坏,例如分类猫可以通过准确率(Precision)、召回率(Recall)、F1、ROC曲线、AUC面积等。确定了评估标准之后,评估数据集也要准备好。

3. 确定Baseline和Target

  • Baseline

有了评估标准后,需要确定一个Baseline,例如可以简单快速的训练一个模型或已经有一个Pretrained Model,在评估数据集上进行评估,得到一个指标作为Baseline,然后在Baseline的基础上进行提高,确定Baseline类似于敏捷开发中的快速原型开发。

  • Target

有了Baseline之后,可以确定一个目标,但这个目标不能是拍脑袋出来的,如果你的业务与别人的业务类似,例如色情识别,可以使用大厂(BAT)的模型先在评估数据集上得出一个结果,目标定为达到他们的水平或超过他们的水平。如果不跟别人的业务类似,那么需要根据具体的业务需求确定一个目标。目标还是要有的,起码确定一个方向。

4. 模型训练

模型训练这部分就没太多说的了,深度学习工程师的基本功。

5. 模型评估

将训练的模型在评估数据集上进行评估,分析评估结果,与上一次的模型结果以及Target进行对比。将错误的数据取出来,分析存在的问题,讨论调整的方向,记录实验结果。

6. 模型再训练

重复步骤4、5,直至达到目标。如果模型还不错,可以将模型放到Beta环境测试,分析线上的结果,重复步骤4、5。

7. 服务部署

如果模型在Beta环境也不错,则可以进行线上测试,继续重复步骤4、5,因为有的模型需要不断的进行迭代更新。

参考资料

https://towardsdatascience.com/machine-learning-in-practice-what-are-the-steps-a4b15ee18546

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容