OpenAI Gym学习(一):OpenAI Gym 初探

1. OpenAI Gym 介绍

OpenAI Gym 是一个用于开发和比较RL 算法的工具包,它包括一系列不断增长、完善的环境(如 simulated robotsAtari),还提供了可以用于比较和评估算法的 平台。与其他的数值计算库兼容,如tensorflow 或者theano 库。现在主要支持的是Python 语言,以后将支持其他语言。官方提供gym文档

OpenAI Gym包含两部分:,

  • gym 开源
    包含一个测试问题集,每个问题成为环境(environment),可以用于自己的强化学习算法开发,这些环境有共享的接口,允许用户设计通用的算法,例如:Atari、CartPole等。

  • OpenAI Gym 服务
    提供一个站点和api ,允许用户对自己训练的算法进行性能比较。

2. 强化学习介绍

强化学习是机器学习的一个分支,目的是开发出智能体(Agent)做出决策和控制。

  • RL涵盖了所有涉及制定一系列决策的问题,如控制机器人的动作,玩游戏 video games , board games
    RL甚至可以应用于序列与结构化输出的问题上。
  • RL已经有很长的历史,随着深度学习的出现近些年已经在许多复杂的问题上有着很好的表现,比如DeepMind’s Atari results, BRETT from Pieter Abbeel’s group, and AlphaGo,这些工作没有对环境做过多的假设,都运用了RL。

但是,RL也面临以下挑战:

  • 更好的benchmarks:在监督学习中有ImageNet,而强化学习只有庞大的环境集合。但是目前这些环境还是缺少多样性。
  • 缺少标准化的环境 :环境中很小的差异将大大改变问题的难度,因此发表过的研究工作无法重现和比较。

然后——OpenAI Gym出现了。

3. OpenAI Gym环境

OpenAI Gym提供了多种多样的环境,从简单到困难,并涉及到许多不同类型的数据:

  • Classic control and toy text:
    提供了一些RL相关论文中的一些小问题,开始学习Gym从这开始!
  • Algorithmic:
    提供了学习算法的环境,比如翻转序列这样的问题,虽然能很容易用直接编程实现,但是单纯用例子来训练RL模型有难度的。这些问题有一个很好的特性: 能够通过改变序列长度改变难度
  • Atari:
    这里提供了一些小游戏,比如我们小时候玩过的小蜜蜂,弹珠等等。这些问题对RL研究有着很大影响!
  • Board games:
    提供了Go这样一个简单的下棋游戏,由于这个问题是多人游戏,Gym提供有opponent与你训练的agent进行对抗。
  • 2D and 3D robots:
    机器人控制环境。 这些问题用 MuJoCo 作为物理引擎。

当然还有很多好玩的问题,比如CNN的自动调参、Minecraft等,有兴趣的同学可以打开标题的链接了解。

4. OpenAI Gym 评估平台

用户可以记录和上传算法在环境中的表现,生成评估报告。

  • 用户可以使用Monitor Wrapper包装自己的代码环境,Gym记录算法的性能。
  • 用户上传自己模型的Gist,可以生成评估报告,还能录制模型玩游戏的小视频。

在每个环境下都有一个排行榜,用来比较大家的模型表现。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容