并查集 (Disjoint Set Union) 是一种树形的数据结构,用于处理不交集的合并 (union) 及查询 (find) 问题。
实现
- 一个parent数组用来储存每个节点 (node) 的最终父节点 (root)
- 一个find方法用来找寻当前节点 (node) 的最终父节点 (root)
- 一个union方法用来合并两个符合关系的节点
- main方法对于需要合并的节点进行判断,并使用合并后的集合
//find the root parent of index i, it represent the whole cluster
public int find( int[] parent, int i ) {
if(parent[i] == i) {
return parent[i];
}
return find( parent, parent[i] );
}
//merge two node to the same parent because they are correlated
public void union ( int[] parent, int i, int j) {
int ip = find ( parent, i );
int jp = find ( parent, j );
if ( ip != jp ) {
parent[ jp ] = ip;
}
}
public int DSU(int[][] M) {
if ( M.length == 0 ) {
return 0;
}
//initialize the parent array
int[] parent = new int [ M.length ];
for (int i = 0; i < M.length; i++) {
parent[ i ] = i;
}
for (int i = 0; i < M.length; i++) {
for (int j = 0; j < M.length; j++) {
//if satisfied, merge them to one union
if ( i != j && M[i][j] == 1) {
union( parent, i, j );
}
}
}
int count = 0;
//use the union result
for (int i = 0; i < parent.length; i++) {
if ( parent[i] == i ) {
count++;
}
return count;
}
写在一个function内
public int[] findRedundantConnection ( int[][] edges ) {
//only one redundant edge, so number of nodes = edges.length
int[] parent = new int [ edges.length ];
for(int i = 0; i < edges.length; i++) {
parent[ i ] = i;
}
for(int i = 0; i < edges.length; i++) {
// because the node start at 1, parent[i] represent the parent of node i+1
// minus 1 for check and modification, plus 1 when return results
int start = edges[i][0]-1;
int end = edges[i][1]-1;
// ---------------- equivalent to find() function --------------------
// recursively get the root of the union of start
int sroot = start;
while ( sroot != parent[sroot] ) {
sroot = parent[sroot];
}
// recursively get the root of the union of end
int eroot = end;
while ( eroot != parent[eroot] ) {
eroot = parent[eroot];
}
// ---------------- equivalent to union() function --------------------
if ( sroot==eroot ) {
// is already in the same union, current edge is redundant
int[] ans= { start+1, end+1 };
return ans;
}else {
// merge to the same union
parent[eroot] = sroot;
}
}
return null;
}
优化
路径优化 Path Compression
在find时使所有子节点均指向最终父节点,缩短递归查找父节点的路径
注:路径压缩并不会改变每个节点的秩
private int find(int[] parent, int p) {
if( parent[i] == i ) {
return parent[i];
}
parent[i] = find( parent, parent[i] ); //refresh value in the array before pass it to bottom
return parent[i];
}
按秩合并 Union by Rank
在union时将节点少的树向节点(size)多的树合并。因为节点多少并不一定代表树的高度,所以可以进一步抽象化为将高度(rank,即这里的秩)小的树合并向高度大的树,以减少向上搜索的复杂度
//merge tree with smaller size to tree with larger size
// size[i] is initialized in main method to 1
public void union ( int[] parent, int[] size, int i, int j) {
int ip = find ( parent, i );
int jp = find ( parent, j );
if ( ip != jp ) {
if ( size[ip] > size[jp] ) {
parent[ jp ] = ip;
size[ip] += size[jp];
} else {
parent[ ip ] = jp;
size[jp] += size[ip];
}
}
}
//merge tree with smaller height to tree with larger height
// rank[i] is initialized in main method to 1
public void union ( int[] parent, int[] rank, int i, int j) {
int ip = find ( parent, i );
int jp = find ( parent, j );
if ( ip != jp ) {
//only have to modify rank if the current two trees are with equivalent height
if ( rank[ip] > rank[jp] ) {
parent[ jp ] = ip;
} else if ( rank[jp] > rank[ip] ) {
parent[ ip ] = jp;
} else {
parent[ jp ] = ip;
rank[ip]++;
}
}
}
复杂度
N = 需要合并的节点数
空间:,建立了与节点树等长的parent数组
时间: 当同时使用了路径压缩和按秩合并后,合并的时间复杂度为≈。单次操作复杂度为≈1。其中是Inverse-Ackerman函数。如果只有路径压缩或按秩合并,单次操作复杂度为。
相关练习
Leetcode CN 684 - 冗余连接
Leetcode CN 547 - 朋友圈
Leetcode CN 1202 - 交换字符串中的元素