数据框Data frames ------From STHDA

Data frames ---From STHDA

A data frame is like a matrix but can have columns with different types (numeric, character, logical).
Rows are observations (individuals) and columns are variables.

Create a data frame

using the function data.frame(), as follow:

friends_data <- data.frame(name = c("A","B","C","D"),
                          age = c(25,27 ,26,29),
                          height = c(180, 170, 185, 169),
                          married = c(T,F,F,T)
)# Create a data frame
friends_data # Print
is.data.frame(friends_data) #To check whether a data is a data frame, use the is.data.frame() function. Returns TRUE if the data is a data frame.
data.frame() is.data.frame()

col1 <- c(5, 6, 7, 8, 9)# Numeric vectors
col2 <- c(2, 4, 5, 9, 8)# Numeric vectors
col3 <- c(7, 3, 4, 8, 7)# Numeric vectors
my_data <- cbind(col1, col2, col3)# Combine the vectors by column
my_data
is.data.frame(my_data)
class() as.data.frame()

The object “friends_data” is a data frame, but not the object “my_data”. We can convert-it to a data frame using the as.data.frame() function:

class(my_data)# What is the class of my_data? --> matrix

my_data2 <- as.data.frame(my_data)# Convert it as a data frame

class(my_data2)# Convert it as a data frame

As described in matrix section, you can use the function t() to transpose a data frame:

t(friends_data)
t()

Subset a data frame

To select just certain columns from a data frame, you can either refer to the columns by name or by their location (i.e., column 1, 2, 3, etc.).

  1. Positive indexing by name and by location
    Select rows/columns by positive indexing---Select by row/column names
# Access the data in 'name' column
# dollar sign is used  ***$***
friends_data$name

# or use this
friends_data[, 'name']

# Subset columns 1 and 3
friends_data[ , c(1, 3)]
positive indexing:$ ,"colname",c(1,2,3,4:5)
  1. Negative indexing
    Exclude rows/columns by negative indexing
# Exclude column 1
friends_data[, -1]

Negative indexing: -1,c(-1,-2)
  1. Index by characteristics
    Selection by logical: T F
#We want to select all friends with age >= 27.

friends_data$age >= 27# Identify rows that meet the condition,return  lodgic, 
 #TRUE specifies that the row contains a value of age >= 27.else ,FALSE, not

friends_data[friends_data$age >= 27, ]# Select the rows that meet the condition

#The R code above, tells R to get all rows from friends_data where age >= 27, and then to return all the columns.

#If you don’t want to see all the column data for the selected rows but are just interested in displaying, for example, friend names and age for friends with age >= 27, you could use the following R code:


friends_data[friends_data$age >= 27,  c(1, 2)]# Use column locations
# Or use column names
friends_data[friends_data$age >= 27, c("name", "age")]
logical indexing

indexing: positive,negative,logic

a. If you’re finding that your selection statement is starting to be inconvenient, you can --put your row and column selections into variables first---, such as:
b. Then you can select the rows and columns with those variables:

age27 <- friends_data$age >= 27
cols <- c("name", "age")

friends_data[age27, cols]
index by variables
  1. function :subset()
    It’s also possible to use the function subset() as follow.
    subset()
# Select friends data with age >= 27
subset(friends_data, age >= 27)
function :subset()
  1. function: attach() and detach().
    Another option is to use the functions attach() and detach().
    The function attach() takes a data frame and makes its columns accessible by simply giving their names.
    used as follow:
# Attach a data frame
attach(friends_data)
# === Data manipulation ====
friends_data[age>=27, ]
# === End of data manipulation ====
# Detach the data frame
detach(friends_data)
functions attach() and detach().

Extend a data frame

a. $ #Add new column in a data frame

# Add group column to friends_data
friends_data$group <- friend_groups
friends_data
$
variable$colname

b. It’s also possible to use the functions cbind() and rbind() to extend a data frame.

cbind(friends_data, group = friend_groups)
cbind(df1,df2)

Calculations with data frame or matrix

With numeric data frame, you can use the function
rowSums(),
colSums(),
colMeans(),
rowMeans()
and apply()
as described in matrix section.
rowSums() and colSums() functions: Compute the total of each row and the total of each column, respectively.
It’s also possible to perform simple operations on matrice. For example, the following R code multiplies each element of the matrix by 2:

matrix

Note that, it’s also possible to use the function apply() to apply any statistical functions to rows/columns of matrices.
Use apply() as follow:

my_data
my_data*2
log2(my_data)#compute the log2 values
rowSums(my_data)# Total of each row
colSums(my_data)# Total of each column
  
 #apply(X, MARGIN, FUN) #X: your data matrix #MARGIN: possible values are 1 (for rows) and 2 (for columns) #FUN: the function to apply on rows/columns

apply(my_data, 1, mean) # Compute row means
apply(my_data, 1, median)# Compute row medians
apply(my_data, 2, mean)# Compute column means
numeric matrix row col calculations
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容