25 | 红黑树(上):为什么工程中都用红黑树这种二叉树?

二叉查找树是最常用的一种二叉树,它支持快速插入、删除、查找操作,各个操作的时间复杂度跟树的高度成正比,理想情况下,时间复杂度是 O(logn)。

不过,二叉查找树在频繁的动态更新过程中,可能会出现树的高度远大于 log_2n 的情况,从而导致各个操作的效率下降。极端情况下,二叉树会退化为链表,时间复杂度会退化到 O(n)。要解决这个复杂度退化的问题,我们需要设计一种平衡二叉查找树。

很多书籍里,但凡讲到平衡二叉查找树,就会拿红黑树作为例子。不仅如此,在工程中,很多用到平衡二叉查找树的地方都会用红黑树。你有没有想过,为什么工程中都喜欢用红黑树,而不是其他平衡二叉查找树呢?

什么是“平衡二叉查找树”?

平衡二叉树的定义:二叉树中任意一个节点的左右子树的高度相差不能大于 1。

平衡二叉查找树不仅满足上面平衡二叉树的定义,还满足二叉查找树的特点。最先被发明的平衡二叉查找树是AVL 树,它严格符合刚讲到的平衡二叉查找树的定义,即任何节点的左右子树高度相差不超过 1,是一种高度平衡的二叉查找树。

但是很多平衡二叉查找树其实并没有严格符合上面的定义(树中任意一个节点的左右子树的高度相差不能大于 1),比如我们下面要讲的红黑树,它从根节点到各个叶子节点的最长路径,有可能会比最短路径大一倍。

平衡二叉查找树中“平衡”的意思,其实就是让整棵树左右看起来比较“平衡”,不要出现左子树很高、右子树很矮的情况。这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率更高一些。

我们学习数据结构和算法是为了应用到实际的开发中的,所以,没必要去死扣定义。如果我们现在设计一个新的平衡二叉查找树,只要树的高度不比 log_2n 大很多(比如树的高度仍然是对数量级的),尽管它不符合我们前面讲的严格的平衡二叉查找树的定义,但我们仍然可以说这是一个合格的平衡二叉查找树。

如何定义一棵“红黑树”?

平衡二叉查找树其实有很多,比如,Splay Tree(伸展树)、Treap(树堆)等,但是我们提到平衡二叉查找树,听到的基本都是红黑树,有时候,我们甚至默认平衡二叉查找树就是红黑树。

红黑树的英文是“Red-Black Tree”,简称 R-B Tree。它是一种不严格的平衡二叉查找树。

顾名思义,红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑树还需要满足这样几个要求:

  • 根节点是黑色的;

  • 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;

  • 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;

  • 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;

第二点要求“叶子节点都是黑色的空节点”,稍微有些奇怪,它主要是为了简化红黑树的代码实现而设置的。这节我们暂时不考虑这一点,在画图和讲解的时候,将黑色的、空的叶子节点都省略掉了。

为什么说红黑树是“近似平衡”的?

“平衡”的意思可以等价为性能不退化。“近似平衡”就等价为性能不会退化的太严重。

如果要证明红黑树是近似平衡的,我们只需要分析,红黑树的高度是否比较稳定地趋近 log_2n 就好了。

首先,我们来看,如果我们将红色节点从红黑树中去掉,那单纯包含黑色节点的红黑树的高度是多少呢?

前面红黑树的定义里有这么一条:从任意节点到可达的叶子节点的每个路径包含相同数目的黑色节点。我们从四叉树中取出某些节点,放到叶节点位置,四叉树就变成了完全二叉树。所以,仅包含黑色节点的四叉树的高度,比包含相同节点个数的完全二叉树的高度还要小,即小于 log_2n

我们现在知道只包含黑色节点的“黑树”的高度,现在把红色节点加回去,高度会变成多少呢?

从红黑树的例子和定义看,在红黑树中,红色节点不能相邻,也就是说有一个红色节点就要至少有一个黑色节点,将它跟其他红色节点隔开。红黑树中包含最多黑色节点的路径不会超过log_2n,所以加入红色节点之后,最长路径不会超过 2log_2n,也就是说,红黑树的高度近似 2log_2n

所以,红黑树的高度只比高度平衡的 AVL 树的高度 (log_2n) 仅仅大了一倍,在性能上下降得并不多。这样推导出来的结果不够精确,但实际上红黑树的性能要比推算的结果更好些。

解答开篇

有很多平衡二叉查找树,为什么在工程中大家都喜欢用红黑树这种平衡二叉查找树呢?

前面提到 Treap、Splay Tree,绝大部分情况下,它们操作效率都很高,但是也无法避免极端情况下时间复杂度的退化。尽管这种情况出现的概率不大,但是对于单次操作时间非常敏感的场景来说,它们并不适用。

AVL 树是一种高度平衡的二叉树,查找的效率非常高,但是,有利就有弊,AVL 树为了维持这种高度的平衡,就要付出更多的代价。每次插入、删除都要做调整,就比较复杂、耗时。所以,对于有频繁的插入、删除操作的数据集合,使用 AVL 树的代价就有点高了。

红黑树的插入、删除、查找各种操作性能都比较稳定。对于工程应用来说,要面对各种异常情况,为了支撑工业级的应用,我们更倾向使用这种性能稳定的平衡二叉查找树。

内容小结

红黑树算是最难掌握的一种数据结构。其实红黑树最难的地方是它的实现。

不过我们学习数据结构和算法,要学习它的由来、特性、适用的场景以及它能解决的问题。对于红黑树,也不例外。如果能搞懂这几个问题也就够了。

红黑树是一种平衡二叉查找树。它是为了解决普通二叉查找树在数据更新的过程中,复杂度退化的问题而产生的。红黑树的高度近似 log_2n,所以它是近似平衡,插入、删除、查找操作的时间复杂度都是 O(logn)。

因为红黑树是一种性能非常稳定的二叉查找树,所以在工程中,但凡是用到动态插入、删除、查找数据的场景,都可以用到它。不过,它实现起来比较复杂,如果自己写代码实现,难度会有些高,这个时候,我们会更倾向用跳表来替代它。

课后思考

动态数据结构是支持动态的更新操作,里面存储的数据是时刻在变化的。

动态数据结构支持动态的数据插入、删除、查找操作,除了红黑树,我们前面还学习过哪些呢?能对比一下各自的优势、劣势,以及应用场景吗?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容