原文链接Chapter 12 Cell type annotation
1、概述
straightforward annotation approach is to compare the single-cell expression profiles with previously annotated reference datasets.
其中最关键的就是reference datasets参考数据
关于参考数据,本质上就是sce对象,其中colData slot 含有cell type 的 label信息-
本文笔记主要基于
SingleR包
的注释方法,而且该包也内置了许多 reference data可供使用。
2、SingleR注释
(1)基本方法
#加载待注释sce
load("fluidigm.clust.RData")
fluidigm.clust
#准备合适的ref data
library(SingleR)
ref <- BlueprintEncodeData()
ref
pred <- SingleR(test=fluidigm.clust, ref=ref, labels=ref$label.main)
#pred <- SingleR(test=fluidigm.clust, ref=ref, labels=ref$label.fine)
table(pred$labels)
-
ref$label.fine
provides more resolution at the cost of speed and increased ambiguity in the assignments.
简单来说就是reflabel.fine分得细
fluidigm.clust
colnames(colData(fluidigm.clust))
fluidigm.clust$celltype <- pred$labels
table(fluidigm.clust$celltype)
plotReducedDim(fluidigm.clust, dimred="UMAP", colour_by="celltype")
fluidigm.anno <- fluidigm.clust
save(fluidigm.anno,file = "fluidigm.anno.Rdata")
(2)visualization digonosis
- heatmap
每一列为细胞与细胞类型(行)的比对情况,列标注取比对值最高对应的细胞类型
plotScoreHeatmap(pred)
- jitter and violin plots
showing assignment scores or related values for all cells across one or more labels.
sum(is.na(pred$pruned.labels))
#无 pruned cell
plotScoreDistribution(pred)
#black point for each cell
#grey area for cells that were assigned to the label.
#yellow area for other cells not assigned to the label.
- 最后还可以比较下已知注释分类与singler预测分类的关系
tab <- table(Assigned=pred$pruned.labels, Cluster=fluidigm.clust$Cluster2)
tab
# Adding a pseudo-count of 10 to avoid strong color jumps with just 1 cell.
library(pheatmap)
pheatmap(log2(tab+10), color=colorRampPalette(c("white", "blue"))(101))
ref data from other source
- 代表性的就是scRNAseq contains many single-cell datasets, many of which contain the authors’ manual annotations.可以用来当做ref data。
library(scRNAseq)
sceM <- MuraroPancreasData()
sceM
#此外要注意的是基因名为Ensemble ID
table(sceM$label)
- 待分类数据
#ID转换:symbol→ensemble
library(AnnotationHub)
edb <- AnnotationHub()[["AH73881"]]
gene.symb <- sub("__chr.*$", "", rownames(sceG))
gene.ids <- mapIds(edb, keys=gene.symb,
keytype="SYMBOL", column="GENEID")
keep <- !is.na(gene.ids) & !duplicated(gene.ids)
sceG <- sceG[keep,]
rownames(sceG) <- gene.ids[keep]
counts(sceG)[1:4,1:4]
sceG
- 注释
pred.sceG <- SingleR(test=sceG, ref=sceM,
labels=sceM$label, de.method="wilcox")
table(pred.sceG$labels)
3、其它注释方法
简单介绍,不再操作,详见原文
(1)Assigning cell labels from gene sets
- A related strategy is to explicitly identify sets of marker genes that are highly expressed in each individual cell.
- 简单来说是比较特定细胞代表基因特征与待分类sce的每一个细胞的表达概况的相似度,以AUC曲线为指标确定最符合的cell type
(2)Assigning cluster labels from markers
- Yet another strategy for annotation is to perform a gene set enrichment analysis on the marker genes defining each cluster.
- This identifies the pathways and processes that are (relatively) active in each cluster based on upregulation of the associated genes compared to other clusters.
- 简单来说,就是对每个clust的marker基因进行go/kegg点的富集分析,通过对应结果的discription确定cell type
以上是第十二章Clustering部分的简单流程笔记,主要学习了基于SingleR的cell type注释方法。其它方式详见原文Chapter 12 Cell type annotation
本系列笔记基于OSCA全流程的大致流程梳理,详细原理可参考原文。如有错误,恳请指正!
此外还有刘小泽老师整理的全文翻译笔记,详见目录。