模型评估标准之ROC AUC PR

在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢?

    1. TP, FP, TN, FN
        True Positives,TP:预测为正样本,实际也为正样本的特征数
        False Positives,FP:预测为正样本,实际为负样本的特征数
        True Negatives,TN:预测为负样本,实际也为负样本的特征数
        False Negatives,FN:预测为负样本,实际为正样本的特征数
    1. 精确率(precision),召回率(Recall)与特异性(specificity)
      精确率:P = \frac{TP}{TP + FP }
      召回率:R = \frac{TP}{TP + FN }
  • 3.F1
    有时也用一个F1值来综合评估精确率和召回率,它是精确率和召回率的调和均值。当精确率和召回率都高时,F1值也会高。严格的数学定义如下:
    \frac{2}{F_1} = \frac{1}{P} + \frac{1}{R}
    约分后,F1= \frac{2*P*R}{P+R}
    有时候我们对精确率和召回率并不是一视同仁,比如有时候我们更加重视精确率。我们用一个参数β来度量两者之间的关系。如果β>1, 召回率有更大影响,如果β<1,精确率有更大影响。自然,当β=1的时候,精确率和召回率影响力相同,和F1形式一样。含有度量参数βF1我们记为, 严格的数学定义如下:
  • 4.此外
    此外还有灵敏度(true positive rate ,TPR),它是所有实际正例中,正确识别的正例比例,它和召回率的表达式没有区别。严格的数学定义如下:
    TPR = \frac{TP}{TP + FN }
     另一个是1-特异度(false positive rate, FPR),它是实际负例中,错误得识别为正例的负例比例。严格的数学定义如下:
    FPR = \frac{FP}{FP + TN }
    (实际上是负的,给预测成正的了)
    1. RoC曲线和PR曲线
      有了上面精确率, 召回率和特异性的基础,理解RoC曲线和PR曲线就小菜一碟了。
      以TPR为y轴,以FPR为x轴,我们就直接得到了RoC曲线。从FPR和TPR的定义可以理解,TPR越高,FPR越小,我们的模型和算法就越高效。也就是画出来的RoC曲线越靠近左上越好。如下图左图所示。从几何的角度讲,RoC曲线下方的面积越大越大,则模型越优。所以有时候我们用RoC曲线下的面积,即AUC(Area Under Curve)值来作为算法和模型好坏的标准。即AUC值高的模型通常效果更好,如果模型1的ROC曲线被模型2完全包裹住,那么我们可以断言模型2是绝对优于模型1的。



      以精确率为y轴,以召回率为x轴,我们就得到了PR曲线。仍然从精确率和召回率的定义可以理解,精确率越高,召回率越高,我们的模型和算法就越高效。也就是画出来的PR曲线越靠近右上越好。如上图右图所示。

使用RoC曲线和PR曲线,我们就能很方便的评估我们的模型的分类能力的优劣了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349