c#利用Numerical对坐标点进行圆拟合

net core(c#)拟合圆测试

说明

很多时候,我们需要运动物体的转弯半径去描述其机器性能。但在大多数的现实条件下,我们只能够获取到运动物体的 GPS 位置点集,并不能直接得到转弯半径或者圆心位置。为此,我们可以利用拟合圆的方式得到圆坐标方程,由此得到转弯半径和圆心位置。

解决过程

关于拟合圆方程的方法有很多,曾经在这篇译文中获益良多代数逼近法、最小二乘法、正交距离回归法来拟合圆及其结果对比(Python)。此系列文中也给出了提及的三种方法的性能及效果对比,最终得出最优的解决方案就是最小二乘法。由于最近的学习中又进一步了解到,可以利用线性代数的方法去求解。本着大学课程中曾学过的《线性代数》知识,所以想着用此方法再加以解决该问题,以作最对比。

接下来,本文就最小二乘法和线性代数的方法求取圆方程作一论述。

准备

引用矩阵计算库MathNet.Numerics。该库是一个强大的科学计算库,遵循 .Net Standard,所以可以跨平台使用。

创建描述圆的类

public class Circle
{
    /// <summary>
    /// 圆心横坐标
    /// </summary>
    /// <value></value>
    public   double X { get; set; }
    /// <summary>
    /// 圆心纵坐标
    /// </summary>
    /// <value></value>
    public   double Y { get; set; }
    /// <summary>
    /// 圆半径
    /// </summary>
    /// <value></value>
    public  double R { get; set; }
}

画图,引用System.Drawing.Common库,以实现跨平台的图像生成。接下来,我们简单的实现一个图像帮助类来进行图像绘制。

public class ImageHelp
{
    private Image _image;
    public ImageHelp(int width, int height)
    {
        _image = new Bitmap(width, height);
        var graph = Graphics.FromImage(_image);
        graph.Clear(Color.White);
    }
    public void DrawCicle(Circle circle, Brush brush)
    {
        var graph = Graphics.FromImage(_image);
        var count=200;
        var fitPoints = new Point[count+1];
        var step = 2 * Math.PI / count;
        for (int i = 0; i < count; i++)
        {
            //circle
            var p = new Point();
            p.X = (int)(circle.X + Math.Cos(i * step) * circle.R);
            p.Y = (int)(circle.Y + Math.Sin(i * step) * circle.R);
            fitPoints[i] = p;
        }
        fitPoints[count] = fitPoints[0];//闭合圆
        graph.DrawLines(new Pen(brush, 2), fitPoints);
        graph.Dispose();
    }
    public void DrawPoints(double[] X, double[] Y, Brush brush)
    {
        var graph = Graphics.FromImage(_image);
        for (int i = 0; i < X.Length; i++)
        {
            graph.DrawEllipse(new Pen(brush, 2), (int)X[i], (int)Y[i], 6, 6);
        }
        graph.Dispose();
    }
    public void SaveImage(string file)
    {
        _image.Save(file, System.Drawing.Imaging.ImageFormat.Png);
    }
}

模拟点集,由于现实中的数据采集存在着精度、数据记录等众多不确定因素的影像。模拟点集中也将加入一定程度的噪音。以下代码中 x 与 y 中存储着我们的点集数据:

var count = 50;
var step = 2 * Math.PI / 100;
var rd = new Random();
//参照圆
var x0 = 204.1;
var y0 = 213.1;
var r0 = 98.4;
//噪音绝对差
var diff = (int)(r0 * 0.1);
var x = new double[count];
var y = new double[count];
//输出点集
for (int i = 0; i < count; i++)
{
    //circle
    x[i] = x0 + Math.Cos(i * step) * r0;
    y[i] = y0 + Math.Sin(i * step) * r0;
    //noise
    x[i] += Math.Cos(rd.Next() % 2 * Math.PI) * rd.Next(diff);
    y[i] += Math.Cos(rd.Next() % 2 * Math.PI) * rd.Next(diff);
}

最小二乘法

网上有很多的原理解析,上文中提到的译文中也有提及,这里不在过多赘述。直接贴出 c#代码实现:

public Circle LeastSquaresFit(double[] X, double[] Y)
{
    if (X.Length < 3)
    {
        return null;
    }
    double cent_x = 0.0,
        cent_y = 0.0,
        radius = 0.0;
    double sum_x = 0.0f, sum_y = 0.0f;
    double sum_x2 = 0.0f, sum_y2 = 0.0f;
    double sum_x3 = 0.0f, sum_y3 = 0.0f;
    double sum_xy = 0.0f, sum_x1y2 = 0.0f, sum_x2y1 = 0.0f;
    int N = X.Length;
    double x, y, x2, y2;
    for (int i = 0; i < N; i++)
    {
        x = X[i];
        y = Y[i];
        x2 = x * x;
        y2 = y * y;
        sum_x += x;
        sum_y += y;
        sum_x2 += x2;
        sum_y2 += y2;
        sum_x3 += x2 * x;
        sum_y3 += y2 * y;
        sum_xy += x * y;
        sum_x1y2 += x * y2;
        sum_x2y1 += x2 * y;
    }
    double C, D, E, G, H;
    double a, b, c;
    C = N * sum_x2 - sum_x * sum_x;
    D = N * sum_xy - sum_x * sum_y;
    E = N * sum_x3 + N * sum_x1y2 - (sum_x2 + sum_y2) * sum_x;
    G = N * sum_y2 - sum_y * sum_y;
    H = N * sum_x2y1 + N * sum_y3 - (sum_x2 + sum_y2) * sum_y;
    a = (H * D - E * G) / (C * G - D * D);
    b = (H * C - E * D) / (D * D - G * C);
    c = -(a * sum_x + b * sum_y + sum_x2 + sum_y2) / N;
    cent_x = a / (-2);
    cent_y = b / (-2);
    radius = Math.Sqrt(a * a + b * b - 4 * c) / 2;
    var result = new Circle();
    result.X = cent_x;
    result.Y = cent_y;
    result.R = radius;
    return result;
}

线性代数

从标准圆方程(x-c1)^2+(y-c2)^2=r^2中进行方程变换得到2xc1+2yc2+(r^2−c1^2−c2^2)=x^2+y^2,其中,我们c3替换常量值r^2−c1^2−c2^2,即:r^2−c1^2−c2^2=c3。由此,我们得到2xc1+2yc2+c3=x^2+y^2,将点集带入,方程就只剩三个未知数`c1,c2 和 c3。

简单起见,假设我们有四个点{[0,5],[0,-5],[5,0],[-5,0]},代入方程可得到四个方程:

  0c1 + 10c2 + c3 = 25
  0c1 - 10c2 + c3 = 25
 10c1 + 0c2  + c3 = 25
-10c1 + 0c2  + c3 = 25

该方程组比较简单,一眼便能看出解。但用线性代数我们可以得到矩阵:

/***************************A**********B******C*/
|  0c1  10c2   1c3|   |  0  10   1|   |c1|   |25|
|  0c1 -10c2   1c3| = |  0 -10   1| * |c2| = |25|
| 10c1   0c2   1c3|   | 10   0   1|   |c3|   |25|
|-10c1   0c2   1c3|   |-10   0   1|          |25|

在矩阵方程中A*B=C,只需求出矩阵B即可得到方程组的解。c#中MathNet.Numerics可以轻松胜任这一工作:

public Circle LinearAlgebraFit(double[] X, double[] Y)
{
    if (X.Length < 3)
    {
        return null;
    }
    var count = X.Length;
    var a = new double[count, 3];
    var c = new double[count, 1];
    for (int i = 0; i < count; i++)
    {
        //matrix
        a[i, 0] = 2 * X[i];
        a[i, 1] = 2 * Y[i];
        a[i, 2] = 1;
        c[i, 0] = X[i] * X[i] + Y[i] * Y[i];
    }
    var A = DenseMatrix.OfArray(a);
    var C = DenseMatrix.OfArray(c);
    //A*B=C
    var B = A.Solve(C);
    double c1 = B.At(0, 0),
        c2 = B.At(1, 0),
        r = Math.Sqrt(B.At(2, 0) + c1 * c1 + c2 * c2);
    var result = new Circle();
    result.X = c1;
    result.Y = c2;
    result.R = r;
    return result;
}

最后总结

Console.WriteLine($"raw   c1:{x0}, c2:{y0}, r:{r0}");
var fit = new FitCircle();
var sth = new Stopwatch();
sth.Start();
var lsf = fit.LeastSquaresFit(x, y);![](https://img2018.cnblogs.com/blog/1214143/201908/1214143-20190804173821455-1022769486.jpg)

Console.WriteLine($"LeastSquaresFit   c1:{lsf.X}, c2:{lsf.Y}, r:{lsf.R}, time:{sth.Elapsed}");
sth.Restart();
var laf = fit.LinearAlgebraFit(x, y);
Console.WriteLine($"LinearAlgebraFit  c1:{laf.X}, c2:{laf.Y}, r:{laf.R}, time:{sth.Elapsed}");
var img = new ImageHelp(512, 512);
img.DrawPoints(x, y, Brushes.Red);
img.DrawCicle(lsf, Brushes.Green);
img.DrawCicle(laf, Brushes.Orange);
img.SaveImage("graph.jpeg");

控制台输出:

raw   c1:204.1, c2:213.1, r:98.4
LeastSquaresFit   c1:204.791071061878, c2:210.86075318831, r:100.436594821545, time:00:00:00.0011029
LinearAlgebraFit  c1:204.791071061878, c2:210.860753188315, r:100.436594821541, time:00:00:00.1691119

从结果中可以看出,两种方法的结果基本一样,在小数点后好几位才出现差别。但是其计算效率却差异巨大,最小二乘法比线性代数快上 100 多倍。
在图中,二者重合(绿色被后面的橙色覆盖)。

image
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356