利用Python进行数据分析(10)-移动窗口函数

Python-for-data-移动窗口函数

本文中介绍的是\color{red}{移动窗口函数},主要的算子是:

  • rolling算子
  • expanding算子
  • ewm算子
image

移动窗口函数

统计和通过其他移动窗口或者指数衰减而运行的函数,称之为移动窗口函数

  • ounter(line
  • ounter(line
  • ounter(line
  • ounter(line
import pandas as pd
  • ounter(line
  • ounter(line
  • ounter(line
close_px_all = pd.read_csv("./examples/stock_px_2.csv"
  • ounter(line
  • ounter(line
  • ounter(line
close_px = close_px_all[["AAPL","MSFT","XOM"]]

<style scoped="">.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre></style>

AAPL MSFT XOM
2003-01-02 7.40 21.11 29.22
2003-01-03 7.45 21.14 29.24
2003-01-06 7.45 21.52 29.96
2003-01-07 7.43 21.93 28.95
2003-01-08 7.28 21.31 28.83
... ... ... ...
2011-10-10 388.81 26.94 76.28
2011-10-11 400.29 27.00 76.27
2011-10-12 402.19 26.96 77.16
2011-10-13 408.43 27.18 76.37
2011-10-14 422.00 27.27 78.11

2292 rows × 3 columns

  • ounter(line
close_px.AAPL.plot()
image

rolling算子

rolling算子,行为和resample和groupby类似

rolling可以在S或者DF上通过一个window进行调用

  • ounter(line
  • ounter(line
# 图形更加地平滑:根据250日滑动窗口分组,而不是直接分组
image
  • ounter(line
  • ounter(line
appl_std250 = close_px.AAPL.rolling(250,min_periods=10).std()
2003-01-09         NaN
2003-01-10         NaN
2003-01-13         NaN
2003-01-14         NaN
2003-01-15    0.077496
2003-01-16    0.074760
2003-01-17    0.112368
Freq: B, Name: AAPL, dtype: float64

  • ounter(line
  • ounter(line
  • ounter(line
# 滚动窗口函数需要窗口中所有的值必须是非NaN值
<matplotlib.axes._subplots.AxesSubplot at 0x11ee210d0>

image

在DF上调用移动窗口函数作用到每列

  • ounter(line
close_px.rolling(60).mean().plot(logy=True)
image
  • ounter(line
  • ounter(line
## rolling算子接收固定大小的时间偏置字符串

<style scoped="">.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre></style>

AAPL MSFT XOM
2003-01-02 7.400000 21.110000 29.220000
2003-01-03 7.425000 21.125000 29.230000
2003-01-06 7.433333 21.256667 29.473333
2003-01-07 7.432500 21.425000 29.342500
2003-01-08 7.402000 21.402000 29.240000
... ... ... ...
2011-10-10 389.351429 25.602143 72.527857
2011-10-11 388.505000 25.674286 72.835000
2011-10-12 388.531429 25.810000 73.400714
2011-10-13 388.826429 25.961429 73.905000
2011-10-14 391.038000 26.048667 74.185333

2292 rows × 3 columns

扩展均值算子 expanding

  • ounter(line
  • ounter(line
  • ounter(line
# 调用扩展均值算子
2003-01-02          NaN
2003-01-03          NaN
2003-01-06          NaN
2003-01-07          NaN
2003-01-08          NaN
                ...    
2011-10-10    18.521201
2011-10-11    18.524272
2011-10-12    18.527385
2011-10-13    18.530554
2011-10-14    18.533823
Freq: B, Name: AAPL, Length: 2292, dtype: float64

指数加权函数

指定一个常数衰减因子为观测值提供更多的权重。常用指定衰减因子的方法:使用span(跨度)

ewm算子

  • ounter(line
  • ounter(line
  • ounter(line
# 将苹果公司的股票价格的60日均线和span=60的EW移动均线进行比较
  • ounter(line
ewma60 = appl_px.ewm(span=30).mean()

rolling和ewm对比

  • ounter(line
ma60.plot(style="k--",label="Simple MA")
image
  • ounter(line
ewma60.plot(style="k-",label="EWMA")
image

二元移动窗口函数rolling+corr

一些统计算子,例如相关度和协方差等需要同时操作两个时间序列。

例如,金融分析中的股票和基准指数的关联性问题:计算时间序列的百分比变化pct_change()

  • ounter(line
close_px_all[:5]

<style scoped="">.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre></style>

AAPL MSFT XOM SPX
2003-01-02 7.40 21.11 29.22 909.03
2003-01-03 7.45 21.14 29.24 908.59
2003-01-06 7.45 21.52 29.96 929.01
2003-01-07 7.43 21.93 28.95 922.93
2003-01-08 7.28 21.31 28.83 909.93

计算苹果和标普500的相关性

  • ounter(line
  • ounter(line
spx_px = close_px_all["SPX"]  # 选择某列的数据
  • ounter(line
returns = close_px.pct_change()  # 计算整个数据的百分比变化
  • ounter(line
  • ounter(line
  • ounter(line
  • ounter(line
  • ounter(line
# 调用rolling后,corr聚合函数可以根据spx_rets计算滚动相关性
image

计算全部公司和标普500的相关性

  • ounter(line
  • ounter(line
corr = returns.rolling(125,min_periods=100).corr(spx_rets)
image

自定义移动窗口函数

在rolling及其相关方法上使用apply方法提供了一种在移动窗口中应用自己设计的数组函数的方法。

唯一要求:该函数从每个数组中产生一个单值(缩聚),例如使用rolling()...quantile(q)计算样本的中位数

  • ounter(line
  • ounter(line
# 定值的百分位数:scipy.stats.percentileofscore
  • ounter(line
  • ounter(line
  • ounter(line
  • ounter(line
score_at_2percent = lambda x: percentileofscore(x,0.02)
image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356