基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真

1.算法运行效果图预览

(完整程序运行后无水印)


2.算法运行软件版本

matlab2022a


3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

for t=1:Iters

       for j=1:D

           if rand_flag<0.5  

               if abs(K1)>=1

                  RLidx    = floor(Num*rand()+1);

                  X_rand   = xwoa(RLidx, :);

                  D_X_rand =abs(K2*X_rand(j)-xwoa(i,j));

                  xwoa(i,j)=X_rand(j)-K1*D_X_rand;    

               else

                  D_Leader =abs(K2*woa_idx(j)-xwoa(i,j));

                  xwoa(i,j)=woa_idx(j)-K1*D_Leader;   

               end

           else

                distLeader =abs(woa_idx(j)-xwoa(i,j));

                xwoa(i,j)  =distLeader*exp(2*l).*cos(l.*2*pi)+woa_idx(j);

           end

           %目标函数更新

           if xwoa(i,j)>=tmps(j,2)

               xwoa(i,j)=tmps(j,2);

           end

           if xwoa(i,j)<=tmps(j,1)

               xwoa(i,j)=tmps(j,1);

           end

       end

       gb12(i)= func_obj(xwoa(i,:));

   end

end


LR              = woa_idx(1);

numHiddenUnits1 = floor(woa_idx(2))+1;% 定义隐藏层中LSTM单元的数量

numHiddenUnits2 = floor(woa_idx(3))+1;% 定义隐藏层中LSTM单元的数量



layers =func_model2(Dim,numHiddenUnits1,numHiddenUnits2);

%设置

%迭代次数

%训练模型

%训练模型

[GCNN_net, INFO] = trainNetwork(Dat_train,Lab_train, layers, opts);

Rerr = INFO.TrainingRMSE;

Rlos = INFO.TrainingLoss;

%预测

ypred2 = predict(GCNN_net, Dat_test );


figure

plot(Lab_test, 'r')

hold on

plot(ypred2, 'b-o')

legend('真实值', '预测值')

grid on



figure

subplot(211)

plot(Rerr)

xlabel('迭代次数')

ylabel('RMSE')

grid on


subplot(212)

plot(Rlos)

xlabel('迭代次数')

ylabel('LOSS')

grid on


save R2.mat Rerr Rlos ypred2 Lab_test

168



4.算法理论概述

       基于woa优化的GroupCNN分组卷积网络时间序列预测算法是一种结合了粒子群优化技术和分组卷积神经网络(GroupCNN)的时间序列预测方法。这种方法利用粒子群优化来寻找最优的网络结构和超参数,以提高时间序列预测的准确性和效率。


4.1 分组卷积神经网络(GroupCNN)

      分组卷积是一种减少计算成本同时保持模型性能的有效手段。在深度学习领域,尤其是在卷积神经网络(CNN)中,分组卷积被用来降低参数数量和计算复杂度。假设输入张量为X,卷积核为W,输出张量为Y,则分组卷积的计算可以表示为:



常规卷积和分组卷积,其区别如下图所示:



4.2 WOA优化算法

       WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。鲸鱼优化算法模拟了虎鲸的两种主要觅食策略: Bubble-net attacking 和 Spiral updating 过程。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容