GraphQL搭配MongoDB入门项目实战

什么是GraphQL

GraphQL 是一种面向 API 的查询语言。在互联网早期,需求都以 Web 为主,那时候数据和业务需求都不复杂,所以用 RestAPI 的方式完全可以满足需求。但是随着互联网的发展,数据量增大,业务需求多变。还有各种客户端需要接口适配,基于 RestAPI 的方式,显得越来呆板,因此 GraphQL 便应运而生。它至少可以提供以下三个方面的优势

  1. GraphQL 提供更方便的 API 查询

不同的客户端有时候需要返回的数据格式不同,之前使用 RestAPI 的方式,需要后端针对每一个客户端提供单独的接口。随着业务需求的增加,维护的成本随机呈指数级跃升。而使用 GraphQL 就比较开心了,只需要写一套接口即可

  1. 解决前后端过于依赖

在开发的过程中,前端需要和后端反反复复确认各个字段,防止到时候开发到一半,因为没有对好字段,要大块大块地改代码。现在有 GraphQL 就比较方便了,你需要什么类型的字段,就自己写对应的查询语法

  1. 节约网络和计算机内存资源

之前通过 RestAPI 的方式写接口,有一个很大的问题在于,对于接口的定义,需要前期做大量的工作,针对接口做各种力度的拆分,但即使这样,也没办法应对需求的风云突变。有时候需要返回的仅仅是某个用户的某一类型的数据,但不得不把该用户的其他信息也一并返回来,这既浪费了网络的资源,也消耗了计算机的性能。显然不够优雅,GraphQL 再一次证明了它的强大,它能够提供 DIY 获取所需要的数据,用多少,拿多少,可以说是相当环保了

PS : 更多 GraphQL 的介绍可以看文末的参考资料

介绍

这篇文章,我将用一个具体的 Todo List 实例,和大家一起,一步步手动搭建一个 GraphQL + MongoDB 的项目实例。我们将会在其中用到以下库,开始之前需要提前安装好:

  1. graphene_mongo
  2. graphene
  3. mongoengine
  4. flask_graphql
  5. Flask

在开始之前,我们来梳理一下我们的核心需求,我们要建立一个 Todo List 产品,我们核心的表只有两个,一个是用户表,存储所有的用户信息,另外一个是任务表,存储着所有用户的任务信息。任务表通过用户 id 与对应的用户关联。表结构对应的是一对多的关系,核心的数据字段如下:

task表

{ 
    "_id" : ObjectId("5c353fd8771502a411872712"), 
    "_in_time" : "2019-01-09 08:26:53", 
    "_utime" : "2019-01-09 09:26:39", 
    "task" : "read", 
    "start_time" : "2019-01-09 08:26:53", 
    "end_time" : "2019-01-09 08:26:53", 
    "repeat" : [
        "Wed"
    ], 
    "delete_flag" : NumberInt(0), 
    "user" : "1"
}

user表

{ 
    "_id" : "1", 
    "_in_time" : "2019-01-09 08:39:16", 
    "_utime" : "2019-01-09 09:23:25", 
    "nickname" : "xiao hong", 
    "sex" : "female", 
    "photo": "http://xh.jpg",
    "delete_flag" : NumberInt(0)
}

项目结构

一图胜千言,为更清晰的了解项目的整体结构,我将项目的整体目录结构打印下来,小伙伴们可以参照着目录结构,看接下来的搭建步骤

----task_graphql\
    |----api.py
    |----database\
    |    |----__init__.py
    |    |----base.py
    |    |----model_task.py
    |    |----model_user.py
    |----requirements.txt
    |----schema.py
    |----schema_task.py
    |----schema_user.py
pic_1.png
  • user_model 和 task_model 定义数据模块,直接数据库 mongo 对接
  • 上层定义的 schema 操作 shema_user 和 schema_task 对数据 model 进行增删改查操作
  • 最后 flask 搭建对外的 api 服务实现和外界的请求交互

创建数据模型

我们的数据模型结构非常简单

  • user_model 列出所有的用户信息
  • task_model 列出所有的任务信息,通过user字段与用户表关联,表示该任务归属于哪一个用户
pic_2.png
base.py
from mongoengine import connect

connect("todo_list", host="127.0.0.1:27017")

只需要通过调用 mongoengine 的 connect 指定对应的数据库链接信息和数据库即可,后面直接引入至Flask模块会自动识别连接

model_user.py
import sys
sys.path.append("..")

from mongoengine import Document
from mongoengine import (StringField, IntField)
from datetime import datetime


class ModelUser(Document):

    meta = {"collection": "user"}

    id = StringField(primary_key=True)
    _in_time = StringField(required=True, default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
    _utime = StringField(required=True, default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
    nickname = StringField(required=True)
    sex = StringField(default="unknown", required=True)
    delete_flag = IntField(default=0, required=True)

所要定义的数据文档都通过 mongoengine 的 Document 继承,它可以将对应字段转换成类属性,方便后期对数据进行各种操作,meta 字段指定对应的你需要链接的是哪张 mongo 表

model_task.py
import sys
sys.path.append("..")

from mongoengine import Document
from mongoengine import (StringField, ListField, IntField, ReferenceField)

from .model_user import ModelUser
from datetime import datetime


class ModelTask(Document):

    meta = {"collection": "task"}
    
    _in_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
    _utime = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
    task = StringField(default="", required=True)
    start_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
    end_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
    repeat = ListField(StringField(required=True))
    delete_flag = IntField(default=0, required=True)
    user = ReferenceField(ModelUser, required=True)

其中 required 表示这个字段是必须字段,default 可以设置该字段的默认值。ReferenceField 可以指定和哪个模型相关联,这里指定的是 ModelUser 字段,关联默认为对应 mongo 表中的 _id 字段

创建GraphQL查询

现在我们已经将数据库和模型部分的连接功能完成了,接下来创建 API 部分,在我们的 task_graphql 目录下,有两个文件,schema_task.py 和 schema_user.py 分别将 model_task 和 model_user 类映射成 Graphene schema对象

schema_task.py
from database.model_task import ModelTask
from graphene_mongo import MongoengineObjectType

import graphene
import schema_user

from datetime import datetime


class TaskAttribute:
    id = graphene.ID()
    _in_time = graphene.String()
    _utime = graphene.String()
    task = graphene.String()
    start_time = graphene.String()
    end_time = graphene.String()
    repeat = graphene.List(graphene.String)
    delete_flag = graphene.Int()
    user = graphene.String()


class Task(MongoengineObjectType):

    class Meta:
        model = ModelTask


class TaskNode(MongoengineObjectType):
    class Meta:
        model = ModelTask
        interfaces = (graphene.relay.Node, )
schema_user.py
from database.model_task import ModelTask
from graphene_mongo import MongoengineObjectType

import graphene

from datetime import datetime

class TaskAttribute:
    id = graphene.ID()
    _in_time = graphene.String()
    _utime = graphene.String()
    task = graphene.String()
    start_time = graphene.String()
    end_time = graphene.String()
    repeat = graphene.List(graphene.String)
    delete_flag = graphene.Int()
    user = graphene.String()

class Task(MongoengineObjectType):

    class Meta:
        model = ModelTask

class TaskNode(MongoengineObjectType):
    class Meta:
        model = ModelTask
        interfaces = (graphene.relay.Node, )

现在我们创建一个 schema.py 的文件,把刚才定义好的 schema_task.py 和 schema_user.py 文件引入进来,定义两个对外访问的接口

  • tasks: 查询所有任务信息,返回一个list
  • users: 查询所有用户信息,返回一个list
import schema_user
import schema_task
import graphene
from graphene_mongo.fields import MongoengineConnectionField


class Query(graphene.ObjectType):

    node = graphene.relay.Node.Field()

    tasks = MongoengineConnectionField(schema_task.TaskNode)

    users = MongoengineConnectionField(schema_user.UserNode)

schema = graphene.Schema(query=Query)

创建 Flask 应用

在主目录下创建一个 api.py 文件,将我们之前定义好的数据库连接和 schema 引入进来,用 Flask 的 add_url_rule 方法将两者关联起来,为了方便访问,我们通过引入 flask_graphql 的 GraphQLView 方法,将接口可视化出来,方便调试

from flask import Flask
from schema import schema
from flask_graphql import GraphQLView
from database.base import connect
from logger import AppLogger

log = AppLogger("task_graphql.log").get_logger()

app = Flask(__name__)
app.debug = True

app.add_url_rule("/graphql", view_func=GraphQLView.as_view("graphql", schema=schema, graphiql=True))

if __name__ == '__main__':
    app.run()

到这里,我们就已经用 graphql 成功创建了一个可查询的 Todo List 接口,接下来。我们可以用它来测试一下查询接口吧。然后在开始查询之前大家需要自己 mock 点数据到 mongo 里面

pic_3.png

我们访问接口地址(http://127.0.0.1:5000/graphql),来查询一下看看效果

pic_4.png

添加 GraphQL 更新方法(mutation)

GraphQL 官方将更新创建操作,全部整合在 mutation 下,它包含了插入和更新数据功能,接下来我们就继续上面的操作,将这部分功能完善

schema_task.py
from database.model_task import ModelTask
from graphene_mongo import MongoengineObjectType

import graphene

from datetime import datetime


class TaskAttribute:
    id = graphene.ID()
    _in_time = graphene.String()
    _utime = graphene.String()
    task = graphene.String()
    start_time = graphene.String()
    end_time = graphene.String()
    repeat = graphene.List(graphene.String)
    delete_flag = graphene.Int()
    user = graphene.String()


class Task(MongoengineObjectType):

    class Meta:
        model = ModelTask


class TaskNode(MongoengineObjectType):
    class Meta:
        model = ModelTask
        interfaces = (graphene.relay.Node, )


class CreateTaskInput(graphene.InputObjectType, TaskAttribute):
    pass


class CreateTask(graphene.Mutation):

    task = graphene.Field(lambda: TaskNode)

    class Arguments:
        input = CreateTaskInput(required=True)

    def mutate(self, info, input):
        task = ModelTask(**input)
        task.save()
        return CreateTask(task=task)


class UpdateTask(graphene.Mutation):

    task = graphene.Field(lambda: TaskNode)

    class Arguments:
        input = CreateTaskInput(required=True)

    def mutate(self, info, input):
        id = input.pop("id")
        task = ModelTask.objects.get(id=id)
        task._utime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        task.update(**input)
        task.save()
        return UpdateTask(task=task)
schema_user.py
from database.model_user import ModelUser
from graphene_mongo.types import MongoengineObjectType
import graphene
from datetime import datetime


class UserAttribute:
    id = graphene.String()
    _in_time = graphene.String()
    _utime = graphene.String()
    nickname = graphene.String()
    photo = graphene.String()
    sex = graphene.String()
    delete_flag = graphene.Int()


class User(MongoengineObjectType):

    class Meta:
        model = ModelUser


class UserNode(MongoengineObjectType):

    class Meta:
        model = ModelUser
        interfaces = (graphene.relay.Node, )


class CreateUserInput(graphene.InputObjectType, UserAttribute):
    pass


class CreateUser(graphene.Mutation):

    user = graphene.Field(lambda: UserNode)

    class Arguments:
        input = CreateUserInput(required=True)

    def mutate(self, info, input):
        user = ModelUser(**input)
        user.save()
        return CreateUser(user=user)


class UpdateUser(graphene.Mutation):

    user = graphene.Field(lambda: UserNode)

    class Arguments:
        input = CreateUserInput(required=True)

    def mutate(self, info, input):
        id = input.pop("id")
        user = ModelUser.objects.get(id=id)
        user._utime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        user.update(**input)
        user.save()
        return UpdateUser(user=user)

一看代码便知,我们将需要添加的信息,通过input传入进来,然后将对应的参数进行映射即可。我们再通过实例看下创建数据的效果

pic_5.png

我们再来试下修改数据的操作,like this

pic_6.png

bingo!!!

至此,我们通过 GraphQL 搭配 MongoDB 的操作就完美收关了。

完整项目请查看 github: https://github.com/hacksman/task_graphql_demo

以上都是自己一路踩过了很多坑之后总结出的方法,如有疏漏,还望指正

参考资料

tail_qrcode.jpg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容