数据分析方法概括

数据分析大致可以分为描述性分析、诊断性分析、预测性分析,同样的数据分析的方法论也大致分为:描述性数据分析、数理统计分析、数据挖掘分析。

本篇文章将就此展开谈谈这三种数据分析方法论(方法论没有好坏高低之分,只有合适的。根据业务场景来选择合适的分析方法。一定要以目标为导向,并不是手法越高级就越好。能用简单分析的就不需要使用大数据挖掘。)

一、描述性数据分析方法

描述性数据分析可以用一言蔽之”一句话描述数据“。我们平时说的,这个月的平均访问量是多少,环比增长了多少。用户平均付费是多少,中位数是多少,众位数是多少,四分位数是多少都属于描述性统计分析。描述数据的集中趋势还可以用方差、标准差。用一个指标,一句话概括数据特点。描述数据之间的简单关系可以用相关性分析,如转化率和用户停留时间的正相关的(距离,以实际为准。一般也是这样。)这边大家都比较熟悉,不过多介绍。

二、数理统计分析方法

数理统计涉及较多的数学知识,但是其实常用的也就是概率论和微积分,本科的知识稍微复习一下还是容易掌握的。微积分只需要用到一元积分,用于计算概率分布。统计学中有许许多多的内容,在数据分析中,并不是所有都需要掌握。因为我们不是在做实验室里科学实验的数据分析。

1. 方差分析

方差分析,又称为F检验。作用是研究因素对于数值型变量的影响。例如想要知道某次改版对于转化率是否有显著影响,可能从宏观上看增长的数值不大,看不大出来影响有多大,这时候就可以用方差分析做对于改版这个因素的单因素方差分析。

2. 回归分析

回归分析比较好理解,简单的说就是寻找到一个函数来拟合自变量和因变量的关系。例如想要做一次活动,假设优惠的价格x,销售额为y。这两者之间可能存在y=x+1(纯举例)这样的函数关系式。回归分析就是要找出这样的函数关系,来指导活动的运营,提升ROI。

3. 因子分析

因子分析即从大量的变量中寻找共性因子的统计方法,因子表现为一种表征,通常是多个变量的集合。因子分析可以简化数据,所以是一种降维的方式。常用的因子分析方法有重心法、最小平方法、最大似然法等。

三、数据挖掘分析方法

数据挖掘源于统计机器学习,还有人工智能的方法。之前写过的人工智能相关的文章中有提到,AI=数据+算法=模型。数据挖掘也就是利用算法从数据中寻找规律。因为我们并不能总是能用常见的函数去拟合所有的规律,而太复杂的规律通过人工根本就是无法进行计算的。那么机器学习就可以做到。机器学习的原理其实就是定义一个损失函数,可以把损失函数简单理解为错误率。然后枚举所有的情况,找到错误率最低的模型。用在数据挖掘中,我们可以用到的机器学习算法一般有:

1. 聚类分析

俗话说,物以类聚。聚类分析是一种探索性的分析方法,由机器无监督地将样本数据进行分类,再观察其特征,从而帮助发现潜在的共性。聚类分析的方式也有很多,用不同方式进行的聚类分析结果也不尽相同。

2. 分类

分类应该是机器学习、人工智能中应用最广泛的了。例如NLP中的情感分析、文章分类,CV中的医疗影像诊断,物品识别等等。又扯远了,回到数据分析,常用于数据挖掘的分类算法有:

(1)决策树

决策树直观上的理解就是从样本建立分支规则。举个简单的例子,同事A有时候迟到有时候不迟到,你观察到如果下雨了。A就迟到。如果没有下雨,A就不迟到。主管只有在周一和周三在,如果主管在A就要挨骂了。那么用决策树来预测A是否会挨骂(以上例子纯属YY)就是:

能够构造这样的决策数据的常用算法有C4.5、CART、CHAID、ID3等。

决策时擅长处理离散数据,并可以直观出其中的关键变量。决策树生成的规则也容易被人所理解。接下去要讲的神经网络就不是人可以理解的了。

(2)人工神经网络

人工神经网络是个黑箱模型,神经网络是类似于大脑神经突触连接的形式,仅仅是类似,不能把它理解得过于玄乎,本质上和脑神经的运作方式是相差很大的。人工神经网络包括输入层、输出层、隐藏层。其中隐藏层就是就是对输入层的输入进行各种加权互联,最终得出最逼近训练集的结果。理论上可以逼近任何非线性的关系。能够充分考虑到数据的各种特征。

(3)贝叶斯分类器

是否还记得贝叶斯公式

只要知道P(Y)、P(X)、P(X|Y)就能知道P(Y|X)的值了。前3个值可以通过历史数据得到先验概率,在先验概率的基础上就能对新的事件(数据)进行后验概率的计算。

(4)支持向量机

SVM,是机器学习的重大成果。SVM将非线性的数据将数据映射到一个高维空间,在新的维度上,搜索一个线性最佳超平面,两类数据总是能够被超平面分开。

(5)随机森林

随机森林有着较高的准确率,鲁棒性也好。随机森林运用bootstrap方法从原始样本中抽取样本,对每个样本进行决策树建模,然后将决策树组合,对每个决策树分类出来的结果进行一种投票统计,最终得出分类结果。这个方式很形象的被叫做随机森林。

3. 关联规则

举个例子就能明白什么是关联规则了。大家都知道的“啤酒与尿布”的例子,关联规则算法能够找出多次重复、同时出现的关系。

4. 回归分析

描述性分析中也有回归分析,这边回归和描述性分析中回归的区别主要是,这里指的是多元线性回归和逻辑斯蒂回归。典型的回归问题是运费计算的问题, 快递运费受地区、重量、物品类型、运送方式等多种因素的影响,这时候可以使用多元线性回归来分析他们之间的关系。

本次的分享就到这里,本文大概梳理了统计数据分析的方法论,接下去的系列文章将会逐个对各种方式进行介绍。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容

  • 《数据分析的统计基础》的读书笔记 作 者:经管之家、曹正凤 出版社:电子工业出版社 版 次:2015年2月第1...
    格式化_001阅读 9,551评论 1 58
  • 沙发可以说是我们在家里每天接触最多的物品之一了,如有客人到访,在客厅接待,沙发直接展示主人的品味。饭后一家人其乐融...
    设计师周文斌阅读 623评论 1 1
  • -----惠紫 “一沟浓烈松林翠,满眼清幽宝石蓝”。七月的九寨掩映在苍翠欲滴的浓荫中,湖水碧蓝清澈,明丽见底! “...
    蕙紫阅读 385评论 8 3