分水岭分割算法(WaterShed)

1.watershed算法原理

所有的灰度图像都可视为拓扑平面,灰度值高的区域看成山峰,灰度值低的区域看成山谷,我们向图像上所有的"山谷"注入不同颜色的水,不断的注水,水位则不断上升,注入的水将灌满山谷,并可能淹没山峰,为了防止不同颜色的山谷中的水溢出汇合,我们可在汇合的地方筑起堤坝,故可将堤坝看作是对图像的分割后形成的边界,

image.png

image.png
image.png
image.png

2.常规分水岭分割算法缺点

常规的分水岭算法由于图像上噪声和图局部不连续原因常常表现出过度分割

image.png

3.标记控制的分水岭分割(Marker-controlled watershed)

由于噪声的存在以及连接物体的特点,传统的标记分水岭算法对包含连接物体的灰度图像很难取得满意的分割结果;特别是在背景并不连通的情况下,误分割更为常见;在标记分水岭算法的基础上,提出了一种连接物体分割方法;将属于鲁棒统计的Hough变换用于提取物体标记扩展了标记分水岭算法的应用范围;针对在分割连接物体时,由于背景并非连通,因此允许背景被分别标记,并通过一个后续滤波步骤用以剔除分割后图像中的背景部分,从而得到精确的分割图像;试验证明该算法运算速度快,鲁棒性好,具有广泛的应用价值。

参考:
http://cmm.ensmp.fr/~beucher/wtshed.html
http://cmm.ensmp.fr/~beucher/prometheus.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘...
    大川无敌阅读 14,739评论 0 29
  • 理论 任意的灰度图像可以被看做是地质学表面,高亮度的地方是山峰,低亮度的地方是山谷。给每个孤立的山谷(局部最小值)...
    xxxss阅读 30,777评论 4 55
  • 1、阈值分割 1.1 简介 图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成...
    木夜溯阅读 22,851评论 9 15
  • http://blog.csdn.net/x454045816/article/details/52153250 ...
    G风阅读 12,001评论 0 1
  • 今天你破天荒的和我说话了,你一定从知道我兴奋的时候心中其实是多么的落失。 “这一生,我都是你坚强的后盾!我们一起加...
    听雨来的故事阅读 1,751评论 0 0

友情链接更多精彩内容