无监督学习

K均值算法的优缺点是什么?如何对其进行调优?

K均值算法有一些缺点,例如受初值和离群点的影响,每次的结果不稳定,结果通常不是全局最优而是局部最优解,无法很好的解决数据簇分布差别比较大的情况(比如一类是另一类样本数量的100倍),不太适用于离散分裂等。

但是K均值聚类算法的优点主要体现在:对于大数据集。K均值聚类算法相对是可伸缩和高效的,他的计算复杂度是O(NKt)接近与线性,其中N是数据对象的数目,K是聚类的簇数,t是迭代的轮数。尽管算法经常以局部最优结束,但一般情况下达到局部最优已经可以满足聚类的需求。

希望找到最好的参数θ,能够使最大似然目标函数取最大值。

目标是使损失函数最小,在E-step时,找到一个最逼近目标的函数γ;在M-step时,固定函数γ,更新均值μ(找到当前函数下的最好的值)。所以一定会收敛了.

聚类评估(轮廓系数Silhouette Coefficient)

这个指标计算的是样本i到同簇其他样本的平均距离 , 越小,说明样本i越应该被聚类到该簇。将 称为样本i的簇

内不相似度。

计算样本i到其他某簇的所有样本的平均距离,称为样本i与簇 的不相似度。

接近1,则说明样本i聚类合理

接近-1,则说明样本i更应该分类到另外的簇

若 近似为0,则说明样本i在两个簇的边界上。

我们对标准化前后的数据进行轮廓系数计算:


做标准化的结果比较低,不做标准化的结果比较高。这是因为特征的重要性我们是不知道的,我们将calories的重要度通过标准化降低之后可能会造成不好的影响。

,我们就有了kmeans的一个标准流程:我们先进行聚类,然后可视化展示,之后再评估,想一想什么参数

比较合适,再重新聚类

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容