索引优化

1.explain

有时在使用explain时,感觉有些条件一定能使用到索引,但是并没有使用到,可能是数据少,mysql优化器做了查询优化,全表扫描速度大于索引速度。explain不同mysql版本会有不同的结果,不要完全死记。
表结构

CREATE TABLE test (
id int(11) NOT NULL,
a int(11) DEFAULT NULL,
b int(11) DEFAULT NULL,
c varchar(45) DEFAULT NULL,
d varchar(45) DEFAULT NULL,
PRIMARY KEY (id),
UNIQUE KEY index_d (d),
KEY abc (a,b,c)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

在mysql命令行中,执行explain命令可以看到sql执行计划,如下图所示:


explain

id:select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的顺序增长的,id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行
select_type:表示查询中每个select子句的类型,简单 、复杂,复杂包括简单子查询、派生表(from语句中的子查询)、union 查询

simple:查询中不包含子查询或者union
primary:复杂查询中最外层的 select
subquery:在select或where列表中包含的子查询
derived:在from列表中包含的子查询被标记为derived,mysql会将结果存放在一个临时表中,也称为派生表(derived的英文含义)
union:在 union 中的第二个和随后的 select
union result:从union表获取结果的select被标记为union result

table: explain 的一行所引用的表。
1.当 from 子句中有子查询时,table列是 <derivenN> 格式,表示当前查询依赖 id=N 的查询,于是先执行 id=N 的查询。
2.当有 union 时,union result 的 table 列的值为<union1,2>,1和2表示参与 union 的 select 行id。

type*:表示mysql在表中找到所需行的方式,即mysql决定如何查找表中的行,查找数据行记录的大概范围。
依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL

NULL:MySQL在优化过程中分解语句,执行时甚至不用访问表或索引

system:system是const类型的特例,当查询的表只有一行的情况下为system
const:当mysql对查询某部分进行优化,并转换为一个常量时,使用这些类型访问。如主键或唯一索引表最多只有一行匹配,只需读取一次,所以很快。

eq_ref:主键或唯一索引被连接使用时,最多返回一条符合条件的记录。简单的select查询不会出现这种type
ref:相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要和某个值相比较,可能会找到多个符合条件的行。

range:索引范围扫描,对索引的扫描开始于某一点,返回匹配值域的行,常见于between、<、>、in()等的查询
index:扫描全表索引,index与ALL区别为index类型只遍历索引树,从索引读取

ALL:全表扫描,mysql将遍历全表以找到匹配的行,从硬盘读取

possible_keys
指出MySQL能使用哪个索引在表中找到行,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用。
key*
显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL。查询中若使用了覆盖索引,则该索引仅出现在key列表中。
【MySQL可以利用索引返回select列表中的字段,而不必根据索引再次读取数据文件(即不用遍历两棵索引树),包含所有满足查询需要的数据的索引称为“覆盖索引”】
如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 force index、ignore index。
key_len*
表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度。显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的。

key_len计算规则如下:

  • 字符串
    n char(n):n字节长度
    n varchar(n):2字节存储字符串长度,如果是utf-8,则长度 3n + 2
  • 数值类型
    n tinyint:1字节
    n smallint:2字节
    n int:4字节
    n bigint:8字节
  • 时间类型 
    n date:3字节
    n timestamp:4字节
    n datetime:8字节
  • 如果字段允许为 NULL,需要1字节记录是否为 NULL

row:表示MySQL根据表统计信息及索引选用情况,估算的找到所需的记录所需要读取的行数。
Extra*
十分重要的额外信息

Using index:查询的列被索引覆盖,并且where筛选条件是索引的前导列,是性能高的表现。一般是使用了覆盖索引(索引包含了所有查询的字段)。对于innodb来说,如果是辅助索引性能会有不少提高

Using where:表查询的列未被索引覆盖,where筛选条件非索引的前导列

Using where Using index:查询的列被索引覆盖,并且where筛选条件是索引列之一但不是索引的前导列,意味着无法直接通过索引查找来查询到符合条件的数据,不是索引的最佳使用姿势

NULL:查询的列未被索引覆盖,并且where筛选条件是索引的前导列,意味着用到了索引,但是部分字段未被索引覆盖,必须通过“回表”来实现,不是纯粹地用到了索引,也不是完全没用到索引

Using index condition:与Using where类似,查询的列不完全被索引覆盖,where条件中是一个前导列的范围

Using temporary:表示mysql需要使用临时表来存储结果集,常见于group by

Using filesort: MySQL中无法利用索引完成的排序操作称为“文件排序”,常见于order by

2.查询索引失效

1.索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效
2.索引中范围条件右边的索引列会失效
3.mysql在使用不等于(!=或者<>)的时候无法使用索引会导致全表扫描
4.is null,is not null 也无法使用索引
5.字符串不加单引号索引失效
6.like以通配符开头('%abc...')mysql索引会失效

关于部分索引命名符合使用条件,有时却会导致索引失效
如:or或in,或范围查询
mysql内部优化器会根据检索比例、表大小等都会影响整体评估是否使用索引(如何分析见第4节)
mysql特殊处理:like KK%相当于=常量,%KK和%KK% 相当于范围

3.排序索引失效

explain-Using filesort
order by会导致Using filesort,我们需要做的是使用索引来避免文件排序,因为索引是有序的
Using filesort底层原理见第5节

explain-Using temporary
group by会导致Using temporary,group by实质是先排序后分组,所以实际上避免Using filesort则会避免Using temporary

index(a,b,c)
case:1查询使用索引(a,b) 排序c使用索引(c)

case:2查询使用索引(a) 排序b使用索引(b)

case:3查询使用索引(a,b) 排序d由于d没有索引,产生Using filesort

case:4查询使用索引(a) 排序c没有使用索引产生Using filesort,与case1,case2对比可知查询与order by索引必须连续才可在排序也使用到索引

case:5 同case4

image.png

联合索引是将各个索引字段做字符串连接后作为key,使用时将整体做前缀匹配。

结论:如果where字段与order by字段是连续的组合索引,由于b+树底层是有序的,所以不会出现Using filesort。where条件后通过索引(a,b)前缀匹配到符合条件的数据,由于索引是有序的,所以对这些数据进行order by排序处理时只要order by的字段符合索引的顺序则没有问题,如果order by排序的字段与前边的条件(a,b)不连续则不会使用索引本身的顺序。


case:1 (where a order by b,a)会优化为(order by b),(a,b)符合索引正常顺序,使用索引顺序

case:2 (where a order by b,a)会优化为(order by b),(a,b)符合索引正常顺序,使用索引顺序

case:3 (where a order by c,a)会优化为(order by c),(a,c)不符合索引正常顺序,产生Using filesort

case:4 (where a order by b,c) (a,b,c)符合索引正常顺序,使用索引顺序

case:5 (where a order by a,c)会优化为(order by c),(a,c)不符合索引正常顺序,产生Using filesort

case:6 (where a order by c,b) (a,c,b)不符合索引正常顺序,产生Using filesort

case:7 (where a order by b,c) (a,c,b)符合索引顺序,但是b正序,c逆序,与联合索引底层数据结构顺序不匹配,所以需要重新排序,产生Using filesort

case:8 (where a= and c> order by b) ac查询索引断掉,所以查询(a),排序(b) (a,b)符合索引顺序

case:9 (where a= and b> order by c) (a,b)查询符合索引顺序,(b)范围查询导致后续索引断掉,即order by c不会使用到索引,产生Using filesort

重点:索引是排好序的数据结构,联合索引是将各个索引字段做字符串连接后作为key,,使用时将整体做前缀匹配。所以一定要顺序匹配索引才会使用索引。

4.trace工具

-- 开启trace工具
set session optimizer_trace="enabled=on",end_markers_in_json=on;
-- 鉴定sql运行
select * from sy_demo.user where name > 'hh';
-- 查看trace工具sql结果
SELECT * FROM information_schema.OPTIMIZER_TRACE;
-- 关闭trace
set session optimizer_trace="enabled=off";

{
    "steps": [{
            "join_preparation": {    ‐‐第一阶段:SQL准备阶段
                "select#": 1,
                "steps": [{
                    "expanded_query": "/* select#1 */ select `sy_demo`.`user`.`id` AS `id`,`sy_demo`.`user`.`name` AS `name`,`sy_demo`.`user`.`id_card` AS `id_card`,`sy_demo`.`user`.`status` AS `status`,`sy_demo`.`user`.`phone` AS `phone`,`sy_demo`.`user`.`modify_time` AS `modify_time`,`sy_demo`.`user`.`create_time` AS `create_time`,`sy_demo`.`user`.`version` AS `version` from `sy_demo`.`user` where (`sy_demo`.`user`.`name` > 'hh') limit 0,500"
                }] /* steps */
            } /* join_preparation */
        },
        {
            "join_optimization": {    ‐‐第二阶段:SQL优化阶段(如联合索引字段顺序调整)
                "select#": 1,
                "steps": [{
                        "condition_processing": {
                            "condition": "WHERE",
                            "original_condition": "(`sy_demo`.`user`.`name` > 'hh')",
                            "steps": [{
                                    "transformation": "equality_propagation",
                                    "resulting_condition": "(`sy_demo`.`user`.`name` > 'hh')"
                                },
                                {
                                    "transformation": "constant_propagation",
                                    "resulting_condition": "(`sy_demo`.`user`.`name` > 'hh')"
                                },
                                {
                                    "transformation": "trivial_condition_removal",
                                    "resulting_condition": "(`sy_demo`.`user`.`name` > 'hh')"
                                }
                            ] /* steps */
                        } /* condition_processing */
                    },
                    {
                        "substitute_generated_columns": {} /* substitute_generated_columns */
                    },
                    {
                        "table_dependencies": [{    ‐‐表依赖详情
                            "table": "`sy_demo`.`user`",
                            "row_may_be_null": false,
                            "map_bit": 0,
                            "depends_on_map_bits": [] /* depends_on_map_bits */
                        }] /* table_dependencies */
                    },
                    {
                        "ref_optimizer_key_uses": [] /* ref_optimizer_key_uses */
                    },
                    {
                        "rows_estimation": [{    ‐‐预估表的访问成本(重点)
                            "table": "`sy_demo`.`user`",
                            "range_analysis": {
                                "table_scan": {    ‐全表扫描情况 scan
                                    "rows": 17,    ‐‐扫描行数
                                    "cost": 6.5    ‐‐查询成本 相对值
                                } /* table_scan */ ,
                                "potential_range_indexes": [{    ‐‐查询可能使用的索引
                                        "index": "PRIMARY",    ‐‐主键索引
                                        "usable": false,    --是否使用该索引
                                        "cause": "not_applicable"
                                    },
                                    {
                                        "index": "idx_user",    -‐辅助索引
                                        "usable": true,    --是否使用该索引
                                        "key_parts": [    --索引构成
                                            "name",
                                            "id_card",
                                            "phone",
                                            "id"
                                        ] /* key_parts */
                                    }
                                ] /* potential_range_indexes */ ,
                                "setup_range_conditions": [] /* setup_range_conditions */ ,
                                "group_index_range": {
                                    "chosen": false,
                                    "cause": "not_group_by_or_distinct"
                                } /* group_index_range */ ,
                                "analyzing_range_alternatives": {    ‐‐分析各个索引使用成本(重点)
                                    "range_scan_alternatives": [{
                                        "index": "idx_user",
                                        "ranges": [
                                            "hh < name"    ‐‐索引使用范围
                                        ] /* ranges */ ,
                                        "index_dives_for_eq_ranges": true,
                                        "rowid_ordered": false,    ‐‐使用该索引获取的记录是否按照主键排序
                                        "using_mrr": false,
                                        "index_only": false,    ‐‐是否使用覆盖索引
                                        "rows": 10,    ‐‐索引扫描行数
                                        "cost": 13.01,    ‐‐索引使用成本
                                        "chosen": false,    ‐‐是否选择该索引
                                        "cause": "cost"
                                    }] /* range_scan_alternatives */ ,
                                    "analyzing_roworder_intersect": {
                                        "usable": false,
                                        "cause": "too_few_roworder_scans"
                                    } /* analyzing_roworder_intersect */
                                } /* analyzing_range_alternatives */
                            } /* range_analysis */
                        }] /* rows_estimation */
                    },
                    {
                        "considered_execution_plans": [{
                            "plan_prefix": [] /* plan_prefix */ ,
                            "table": "`sy_demo`.`user`",
                            "best_access_path": {    ‐‐最优访问路径
                                "considered_access_paths": [{   ‐‐最终选择的访问路径
                                    "rows_to_scan": 17,
                                    "access_type": "scan",    ‐‐访问类型 "access_type": "scan" 全表扫描  "used_index": "PRIMARY" 主键索引
                                    "resulting_rows": 17,
                                    "cost": 4.4,
                                    "chosen": true    ‐‐确定选择
                                }] /* considered_access_paths */
                            } /* best_access_path */ ,
                            "condition_filtering_pct": 100,
                            "rows_for_plan": 17,
                            "cost_for_plan": 4.4,
                            "chosen": true
                        }] /* considered_execution_plans */
                    },
                    {
                        "attaching_conditions_to_tables": {
                            "original_condition": "(`sy_demo`.`user`.`name` > 'hh')",
                            "attached_conditions_computation": [] /* attached_conditions_computation */ ,
                            "attached_conditions_summary": [{
                                "table": "`sy_demo`.`user`",
                                "attached": "(`sy_demo`.`user`.`name` > 'hh')"
                            }] /* attached_conditions_summary */
                        } /* attaching_conditions_to_tables */
                    },
                    {
                        "refine_plan": [{
                            "table": "`sy_demo`.`user`"
                        }] /* refine_plan */
                    }
                ] /* steps */
            } /* join_optimization */
        },
        {
      "join_execution": {    ‐‐Sql执行阶段
        "select#": 1,
        "steps": [
          {
            "filesort_information": [
              {
                "direction": "asc",
                "table": "`sy_demo`.`user`",
                "field": "phone"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "limit": 500,
              "rows_estimate": 642,
              "row_size": 581,
              "memory_available": 262144,
              "strip_additional_fields": {
                "row_size": 117,
                "sort_merge_cost": 451.8,
                "priority_queue_cost": 1758.8,
                "chosen": false
              } /* strip_additional_fields */
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {    ‐‐文件排序信息
              "rows": 16,    ‐‐预计扫描行数
              "examined_rows": 16,    ‐‐参数排序的行
              "number_of_tmp_files": 0,    ‐‐使用临时文件的个数,这个值如果为0代表全部使用的sort_buffer内存排序,否则使用磁盘文件排序
              "sort_buffer_size": 261816,    ‐排序缓存的大小
              "sort_mode": "<sort_key, packed_additional_fields>"    ‐排序方式,这里用的单路排序
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
    ] /* steps */
}

5.Using filesort原理

  • 单路排序:是一次性取出满足条件行的所有字段存入sort buffer,然后在sort buffer中进行排序;用trace工具可以看到sort_mode信息里显示<sort_key, additional_fields>或者< sort_key, packed_additional_fields>

  • 双路排序(又叫回表排序模式):是首先根据相应的条件取出相应的排序字段和主键id存入sort buffer,然后在 sort buffer 中进行排序,排序完后需要再次根据id回到原表取回其它需要的字段;用trace工具 可以看到sort_mode信息里显示<sort_key, rowid>

MySQL 通过比较系统变量 max_length_for_sort_data(默认1024字节) 的大小和需要查询的字段总大小来 判断使用哪种排序模式。
如果 max_length_for_sort_data 比查询字段的总长度大,那么使用 单路排序模式;
如果 max_length_for_sort_data 比查询字段的总长度小,那么使用 双路排序模式。

6.表关联算法(了解)

mysql的表关联常见有两种算法

Nested-Loop Join 算法
Block Nested-Loop Join 算法

1、 嵌套循环连接 Nested-Loop Join(NLJ) 算法
一次一行循环地从第一张表(称为驱动表)中读取行,在这行数据中取到关联字段,根据关联字段在另一张表(被驱动 表)里取出满足条件的行,然后取出两张表的结果合集。
2、 基于块的嵌套循环连接 Block Nested-Loop Join(BNL)算法
把驱动表的数据读入到 join_buffer 中,然后扫描被驱动表,把被驱动表每一行取出来跟 join_buffer 中的数据做对比。

MySQL对于被驱动表的关联字段没索引的关联查询,一般都会使用 BNL 算法。如果有索引一般选择 NLJ 算法,有 索引的情况下 NLJ 算法比 BNL算法性能更高
关联字段加索引,让mysql做join操作时尽量选择NLJ算法 小表驱动大表

7.count(*)查询优化

explain select count(1) from sy_demo.user;
explain select count(id) from sy_demo.user;
explain select count(*) from sy_demo.user;
explain select count(name) from sy_demo.user;

以上四个sql的执行计划都一样的,都是使用的辅助索引,其执行效率也差不多。区别在于根据某个字段count不会统计字段为null值的数据行
为什么mysql最终选择辅助索引而不是主键聚集索引?因为二级索引相对主键索引存储数据更少,检索性能应该更高,所以即使我们使用count(id)、count(*)、count(1)都是走的辅助索引。而为了防止null影响,参考阿里巴巴编程规范,建议使用count(*)

8.索引口诀

全值匹配我最爱,最左前缀要遵守
带头大哥不能死,中间兄弟不能断
索引列上少计算,范围之后全失效
LIKE符号写最右,覆盖索引不写星
不等空值还有or,索引失效要少用
var引号不能丢,SQL高级也不难
分组之前必排序,一定要上索引啊

参考:
https://www.iteye.com/blog/hudeyong926-785181
https://blog.csdn.net/weiwangchao_/article/details/50256673
https://blog.csdn.net/lbr2008/article/details/79245289#%E5%8F%A3%E8%AF%80

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容