721. Accounts Merge

Description

Given a list accounts, each element accounts[i] is a list of strings, where the first element accounts[i][0] is a name, and the rest of the elements are emails representing emails of the account.

Now, we would like to merge these accounts. Two accounts definitely belong to the same person if there is some email that is common to both accounts. Note that even if two accounts have the same name, they may belong to different people as people could have the same name. A person can have any number of accounts initially, but all of their accounts definitely have the same name.

After merging the accounts, return the accounts in the following format: the first element of each account is the name, and the rest of the elements are emails in sorted order. The accounts themselves can be returned in any order.

Example 1:

Input:
accounts = [["John", "johnsmith@mail.com", "john00@mail.com"], ["John", "johnnybravo@mail.com"], ["John", "johnsmith@mail.com", "john_newyork@mail.com"], ["Mary", "mary@mail.com"]]
Output: [["John", 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com'], ["John", "johnnybravo@mail.com"], ["Mary", "mary@mail.com"]]
Explanation:
The first and third John's are the same person as they have the common email "johnsmith@mail.com".
The second John and Mary are different people as none of their email addresses are used by other accounts.
We could return these lists in any order, for example the answer [['Mary', 'mary@mail.com'], ['John', 'johnnybravo@mail.com'],
['John', 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com']] would still be accepted.

Note:

  • The length of accounts will be in the range [1, 1000].* The length of accounts[i] will be in the range [1, 10].* The length of accounts[i][j] will be in the range [1, 30].

Solution

看了题目之后,原本美美地开始用HashMap写,后来发现是大坑,本题目corner case很多,考虑下面几种情况:

  • [["n"]] // empty account
  • [["n", "e0", "e1", "e01"]] // duplicate email in the same account
  • [["n", "e0", "e1"], ["n0", "e1"]] // duplicate email in different account
  • [["john", "e0", "e1"], ["john", "e2", "e3"], ["john", "e1", "e2"] // these three should be merged

对于最后一个case,我们可以看到其实这三个John是同一个人,但是贪婪算法遍历完前两个John,还是认为其是两个不同的人,当遍历第三个John时,就直接加到第一个John中了,而没有同时把第二个John加进来。

所以简单用HashMap不能解决此问题,必须采用图论的思想,使用DFS或者UnionFind。

DFS

首先build一个email之间的有向图,然后dfs即可。

class Solution {
    public List<List<String>> accountsMerge(List<List<String>> accounts) {
        Map<String, String> email2Name = new HashMap<>();
        Map<String, Set<String>> graph = new HashMap<>();   // email to neighbors
        // build graph
        for (List<String> account : accounts) {
            String name = account.get(0);
            
            for (int i = 1; i < account.size(); ++i) {
                String email = account.get(i);
                email2Name.put(email, name);
                if (!graph.containsKey(email)) {
                    graph.put(email, new HashSet<>());
                }
                
                if (i == 1) {
                    continue;
                }
                // add double directed edge between current email and the first email in account
                String firstEmail = account.get(1);
                graph.get(firstEmail).add(email);
                graph.get(email).add(firstEmail);
            }
        }
        // dfs
        List<List<String>> res = new ArrayList<>();
        Set<String> visitedEmails = new HashSet<>();
        
        for (String email : graph.keySet()) {
            if (!visitedEmails.add(email)) {
                continue;
            }
            List<String> list = new ArrayList<>();
            dfs(graph, email, list, visitedEmails);
            // sort emails and insert name
            Collections.sort(list);    
            list.add(0, email2Name.get(email));
            res.add(list);
        }
        
        return res;
    }
    
    public void dfs(Map<String, Set<String>> graph, String node
                    , List<String> list, Set<String> visited) {
        list.add(node);
        
        for (String neighbor : graph.get(node)) {
            if (visited.add(neighbor)) {
                dfs(graph, neighbor, list, visited);   
            }
        }
    }
}

Union-find, time O(A * log A) or O(A), space O(A), A is total email count

build一个无向图,然后Union find。
用HashMap存储email2Eid,可以天然对email进行去重。

class Solution {
    public List<List<String>> accountsMerge(List<List<String>> accounts) {
        UnionFind uf = new UnionFind();
        Map<String, Integer> email2Eid = new HashMap<>();
        Map<String, String> email2Name = new HashMap<>();
        int id = 0;     // self-increase id
        
        for (List<String> account : accounts) {
            String name = account.get(0);
            
            for (int i = 1; i < account.size(); ++i) {
                String email = account.get(i);
                
                if (!email2Eid.containsKey(email)) {
                    email2Eid.put(email, id++);    // id should increase here!!!
                    email2Name.put(email, name);
                }
                // add an edge from current email to the first email of current account
                uf.union(email2Eid.get(email), email2Eid.get(account.get(1)));
            }
        }
        
        Map<Integer, List<String>> pidToAccount = new HashMap<>();
        
        for (Map.Entry<String, Integer> entry : email2Eid.entrySet()) {
            String email = entry.getKey();
            int eid = entry.getValue();
            int pid = uf.find(eid);
            
            if (!pidToAccount.containsKey(pid)) {
                List<String> account = new ArrayList<>();
                account.add(email2Name.get(email));     // don't forget the name
                pidToAccount.put(pid, account);
            }
            
            pidToAccount.get(pid).add(email);
        }
        
        for (List<String> account : pidToAccount.values()) {
            Collections.sort(account);  // sort finally
        }
        
        return new ArrayList<>(pidToAccount.values());
    }
    
    class UnionFind {
        int[] parent;
        
        public UnionFind() {
            parent = new int[10000];    // at most 10000 emails
            for (int i = 0; i < parent.length; ++i) {
                parent[i] = i;
            }
        }
        
        public int find(int x) {
            if (parent[x] != x) {
                parent[x] = find(parent[x]);
            }
            
            return parent[x];
        }
        
        public void union(int x, int y) {
            parent[find(x)] = parent[find(y)];
        }
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容