2. 数据结构 - 树

这篇文章收录在我的 Github 上 algorithms-tutorial,另外记录了些算法题解,感兴趣的可以看看,转载请注明出处。

(一) 基本概念

树是一种数据结构,它看上去像一棵 "圣诞树",它的根在上,叶朝下。

树有多个节点(node),用以储存元素。某些节点之间存在一定的关系,用连线表示,连线称为边(edge)。边的上端节点称为父节点,下端称为子节点。树像是一个不断分叉的树根。

例如:

tree.jpg

树要吗为空树(empty tree),要吗具有以下特性:

  1. 每个节点可以有多个子节点(children),而该节点是相应子节点的父节点(parent) - 比如说,1,2 是 0 的子节点,3 是 7,8 的父节点
  2. 树有一个没有父节点的节点,称为根节点(root) - 比如图中的 0 节点
  3. 没有子节点的节点称为叶节点(leaf) - 比如图中的 7,8,9,10 节点
  4. 两个具有相同父节点的节点称为兄弟节点(sibling) - 比如图中 4,5 节点互为兄弟节点
  5. 一个节点的子节点以及子节点的后代称为该节点的子树 (subtree) - 比如 1 和 1 的子节点构成了节点 0 的一棵子树

树的深度和高度的定义:(这里不太确定)

  • 树的深度(depth)是从根节点开始(其深度为1)自顶向下逐层累加的
  • 高度(height)也是从根节点开始(其高度为0)自顶向下逐层累加的

例如:该树深度为 3,高度为 2。

tree-level.png

我们将根节点定义为 level0,然后子节点逐层加一,直到叶节点。此时叶节点的 level 数即为树的高度。

(二) 二叉树 (Binary Tree)

首先,二叉树(binary)是一种特殊的树,它是每个节点最多有两个子树的树结构,通常子树被称作是 "左子树" 和 "右子树",二叉树常用于实现二叉搜索树和二叉堆。(这些在后面都会介绍)

例如: 下面这个就是一棵二叉树

binary-tree.jpg

常见的二叉树有:完全二叉树,满二叉树,二叉搜索树,二叉堆,AVL 树,红黑树,哈夫曼树。这些都会在后面一一介绍。

(三) 完全二叉树 (Complete Binary Tree)

若设二叉树的深度为 h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

例如:

complete-binary-tree.jpeg

即除了最后一层外,每一层上的节点数均达到最大值;在最后一层上只缺少右边的若干结点。而像这样就不是完全二叉树, 例如下图:(# 代表有元素)

binary-tree.jpg

用途:

完全二叉树是效率很高的数据结构,堆是一种完全二叉树或者近似完全二叉树,所以效率极高。后面介绍的二叉堆也是基于完全二叉树来实现的。

(五) 满二叉树 (Full Binary Tree)

很好理解,除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树被称之为满二叉树。

满二叉树一定是完全二叉树,完全二叉树不一定满二叉树。

例如:

compare.png

一个高度为 h 的满二叉树含有 1 + 2 + 4 + ... + 2^h = 2^(h + 1) - 1个节点,所以满二叉树的节点个数一定为奇数。

(六) 二叉搜索树 (Binary Search Tree)

二叉搜索树是一种特殊的二叉树,也可以称为二叉排序树,二叉查找树。除了具有二叉树的基本性质外,它还具备:

  1. 树中每个节点最多有两个子树,通常称为左子树和右子树
  2. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
  3. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值
  4. 它的左右子树仍然是一棵二叉搜索树 (recursive)

例图:

binary-search-tree.png

基本操作:

在实行基本操作之前,我们需要先定义一下基本数据类型:

class TreeNode<E extends Comparable<E>>{
    private E data;
    private TreeNode<E> left;
    private TreeNode<E> right;
    TreeNode(E theData){
        data = theData;
        left = null;
        right = null;
    }
}
public class BinarySearchTree<E extends Comparable<E>>{
    private TreeNode<E> root = null;
}

1.树的遍历:

假设我们需要遍历树中所有节点,这里有许多递归方法可以实现:

1.中序遍历:当到达某个节点时,先访问左子节点,再输出该节点,最后访问右子节点。

代码实现:

public void inOrder(TreeNode<E> cursor){
    if(cursor == null) return;
    inOrder(cursor.getLeft());
    System.out.println(cursor.getData());
    inOrder(cursor.getRight());
}

2. 前序遍历:当到达某个节点时,先输出该节点,再访问左子节点,最后访问右子节点。

代码实现:

public void preOrder(TreeNode<E> cursor){
    if(cursor == null) return;
    System.out.println(cursor.getData());
    inOrder(cursor.getLeft());
    inOrder(cursor.getRight());
}

3. 后序遍历:当到达某个节点时,先访问左子节点,再访问右子节点,最后输出该节点。

代码实现:

public void postOrder(TreeNode<E> cursor){
    if(cursor == null) return;
    inOrder(cursor.getLeft());
    inOrder(cursor.getRight());
    System.out.println(cursor.getData());
}

2.树的搜索:

树的搜索和树的遍历差不多,就是在遍历的时候只搜索不输出就可以了。

例如:我们在树中搜索元素 20

search-element.gif

代码实现:

public boolean searchNode(TreeNode<E> node){
    TreeNode<E> currentNode = root;
    while(true){
        if(currentNode == null){
            return false;
        }
        if(currentNode.getData().compareTo(node.getData()) == 0){
            return true;
        }else if(currentNode.getData().compareTo(node.getData()) < 0){
            currentNode = currentNode.getLeft();
        }else{
            currentNode = currentNode.getRight();
        }
    }
}

3.节点插入:

步骤:

  1. 递归地去查找该二叉树,找到应该插入的节点
  2. 若当前的二叉查找树为空,则插入的元素为根节点
  3. 若插入的元素值小于根节点值,则将元素插入到左子树中
  4. 若插入的元素值不小于根节点值,则将元素插入到右子树中

比如:我们往树种插入元素 21

tree-insert-element.gif

代码实现:

public void insertNode(TreeNode<E> node){
    TreeNode<E> currentNode = root;
    if(currentNode == null){
        root = node;
        return;
    }else{
        while(true){
            if(node.getData().compareTo(currentNode.getData()) < 0){
                if(currentNode.getLeft() == null){
                    break;
                }else{
                    currentNode = currentNode.getLeft();
                }
            }else if(node.getData().compareTo(currentNode.getData()) > 0){
            
                if(currentNode.getRight() == null){
                    break;
                }else{
                    currentNode = currentNode.getRight();
                }
            }
        }   
    }
    if(node.getData().compareTo(currentNode.getData()) < 0){
        currentNode.setLeft(node);
    }else if(node.getData().compareTo(currentNode.getData()) > 0){
        currentNode.setRight(node);
    }
}

4.节点删除:

首先需要搜索该节点,然后可以分为以下四种情况进行讨论:

1.如果找不到该节点,那么什么都不用做

例如:要在树中删除元素 22

tree-delete-element-1.gif

2.如果被移除的元素在叶节点(no children):那么直接移除该节点,并且将父节点原本指向该位置改为 null (如果是根节点,那就不用修改父节点指向位置)

例如:要在树中删除元素 6

tree-delete-element-2.gif

3.如果删除的元素只有一个儿子(one child):那么也很简单,直接删除该节点,并且将父节点原本指向的位置改为该儿子 (如果是根节点,那么该儿子成为新的根节点)

例如:要在树中删除元素 20

tree-delete-element-3.gif

4.如果删除的元素有两个儿子,那么可以取左子树中最大元素或者右子树中最小元素进行替换,然后将最大元素最小元素原位置置空

例如:要在树中删除元素 15

tree-delete-element-4.gif

平衡树的应用:

  1. 排序:我们可以将数据一个个读取,构造出一棵平衡树。但我们读取完所有数据后,我们可以按次序遍历该树。但是在插入的过程中需要不断调整。否则他有可能会越来与不平衡,调整的方式有我们后面介绍的 AVL 树和红黑树两种方法。
  2. 时间复杂度为 O(nlog2n + n)
  3. 编译算数表达式:
    我们可以将算术表达式展现为一棵搜索树:所有的叶子节点都是常量或者变量,而除叶节点外所有节点都是操作符。

比如:我们可以将 (A + B) * (C + D) * 2 - X / Y展现为

post order.png

(七) 平衡树 (Balanced Tree)

二叉搜索树虽然在插入和删除时的效率都有所提升,但是如果二叉树变成了下图:

LinkList.png

二叉树快退化成了,那么搜索效率效率就会变得很低,时间复杂度由 logn 退化到 n,这时候我们需要添加一些额外的条件来约束它,使其可以保持具有 logn 的时间复杂度。

老师上课讲的平衡树跟我在网上搜到的绝大部分平衡树都不一样,网上介绍的平衡树就是 AVL 树,而老师介绍的则是另一种平衡树,这里我以老师介绍的为主。

首先平衡树得是二叉树,它满足二叉树的所有性质。

判定是否为平衡树的条件:将该树重新排序,若不存在重新排序后的二叉树的树高比原来的树小,则判定该树为平衡树。

比如:

balanced-tree.png

这里有棵树高度为 2,那么我们知道高度为 1 的树最多只有三个节点,五个节点是无法构成一棵高度为 1 的二叉树,故上图的二叉树是平衡树。

又比如:

no-balanced-tree.png

该树高度为 3,我们知道一棵高度为 2 的树最多可以有 2^(h + 1) - 1 = 7(满二叉树)的节点,故图上的的树只有五个节点,那么它经过重新调整之后可以变为一个高度为 2 的二叉树,故不符合平衡树的性质,故该树不是平衡树。

由上我们可以得出一个结论:

  1. 如果一棵树是平衡的,那么它所满足的节点数 n 需要满足 2^h - 1 < n <= 2^(h + 1) - 1
  2. 插入和删除一个节点的时间复杂度均为: O(logn)
  3. 这里虽然有一些算法可以使平衡二叉树 - 但是它们并没什么卵用,因为我们一般都是在添加或删除操作时候来去平衡树,而不是再一开始去平衡树。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容

  • B树的定义 一棵m阶的B树满足下列条件: 树中每个结点至多有m个孩子。 除根结点和叶子结点外,其它每个结点至少有m...
    文档随手记阅读 13,216评论 0 25
  • 第一章 绪论 什么是数据结构? 数据结构的定义:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 第二章...
    SeanCheney阅读 5,766评论 0 19
  • 基于树实现的数据结构,具有两个核心特征: 逻辑结构:数据元素之间具有层次关系; 数据运算:操作方法具有Log级的平...
    yhthu阅读 4,272评论 1 5
  • [红顺视点]:学校微管理创意100则之七 29、学校重大事务管理如何优化提升? 对读书节、艺术节等重大节日、期外出...
    96c3d102ed6c阅读 439评论 0 0
  • 这段时间公司事情少,难度小,很难激起兴趣。处在一个准备期,主要在看angular用法,jquery源码,有进步,有...
    xxwade阅读 471评论 1 1