SparkSQL 中group by、grouping sets、rollup和cube方法详解

在平时的工作中,经常有按照不同维度筛选和统计数据的需求。拿视频会员订单数据来说吧,运营人员要查看深圳市的成功下单数或则深圳市某一种产品的成功下单数或者某一种产品的所有成功下单数时,每天的订单数又很大,现查的话按照不同的维度去查询又很慢。此时本篇文章或许会帮助到你。

group by:主要用来对查询的结果进行分组,相同组合的分组条件在结果集中只显示一行记录。可以添加聚合函数。

grouping sets:对分组集中指定的组表达式的每个子集执行group by,group by A,B grouping sets(A,B)就等价于 group by A union group by B,其中A和B也可以是一个集合,比如group by A,B,C grouping sets((A,B),(A,C))。

rollup:在指定表达式的每个层次级别创建分组集。group by A,B,C with rollup首先会对(A、B、C)进行group by,然后对(A、B)进行group by,然后是(A)进行group by,最后对全表进行group by操作。

cube:为指定表达式集的每个可能组合创建分组集。首先会对(A、B、C)进行group by,然后依次是(A、B),(A、C),(A),(B、C),(B),( C),最后对全表进行group by操作。

数据库中会员订单的数据映射的对象如下:

case class MemberOrderInfo(area:String,memberType:String,product:String,price:Int)

会员订单表中的数据如下:

    import sqlContext.implicits._
    val orders=Seq(
      MemberOrderInfo("深圳","钻石会员","钻石会员1个月",25),
      MemberOrderInfo("深圳","钻石会员","钻石会员1个月",25),
      MemberOrderInfo("深圳","钻石会员","钻石会员3个月",70),
      MemberOrderInfo("深圳","钻石会员","钻石会员12个月",300),
      MemberOrderInfo("深圳","铂金会员","铂金会员3个月",60),
      MemberOrderInfo("深圳","铂金会员","铂金会员3个月",60),
      MemberOrderInfo("深圳","铂金会员","铂金会员6个月",120),
      MemberOrderInfo("深圳","黄金会员","黄金会员1个月",15),
      MemberOrderInfo("深圳","黄金会员","黄金会员1个月",15),
      MemberOrderInfo("深圳","黄金会员","黄金会员3个月",45),
      MemberOrderInfo("深圳","黄金会员","黄金会员12个月",180),
      MemberOrderInfo("北京","钻石会员","钻石会员1个月",25),
      MemberOrderInfo("北京","钻石会员","钻石会员1个月",25),
      MemberOrderInfo("北京","铂金会员","铂金会员3个月",60),
      MemberOrderInfo("北京","黄金会员","黄金会员3个月",45),
      MemberOrderInfo("上海","钻石会员","钻石会员1个月",25),
      MemberOrderInfo("上海","钻石会员","钻石会员1个月",25),
      MemberOrderInfo("上海","铂金会员","铂金会员3个月",60),
      MemberOrderInfo("上海","黄金会员","黄金会员3个月",45)
    )
    //把seq转换成DataFrame
   val memberDF:DataFrame =orders.toDF()
    //把DataFrame注册成临时表
   memberDF.registerTempTable("orderTempTable")

接下来我们通过操作 orderTempTable 来看一下grouping sets、group by、rollup和cube具体如何使用。

1.group by

group by是SELECT语句的从句,用来指定查询分组条件,主要用来对查询的结果进行分组,相同组合的分组条件在结果集中只显示一行记录。使用group by从句时候,通过添加聚合函数(主要有COUNT()、SUM、MAX()、MIN()等)可以使数据聚合。

 sqlContext.sql("select area,memberType,product,sum(price) as total from orderTempTable group by area,memberType,product")

执行结果如下,可以看到结果中按照area,memberType,product来做聚合sum操作。

+----+----------+--------+---+
|area|memberType|product |total|
+----+----------+--------+---+
|深圳  |铂金会员      |铂金会员6个月 |120|
|深圳  |黄金会员      |黄金会员12个月|180|
|深圳  |钻石会员      |钻石会员3个月 |70 |
|深圳  |黄金会员      |黄金会员3个月 |45 |
|深圳  |钻石会员      |钻石会员12个月|300|
|北京  |黄金会员      |黄金会员3个月 |45 |
|深圳  |钻石会员      |钻石会员1个月 |50 |
|深圳  |黄金会员      |黄金会员1个月 |30 |
|深圳  |铂金会员      |铂金会员3个月 |120|
|北京  |钻石会员      |钻石会员1个月 |50 |
|北京  |铂金会员      |铂金会员3个月 |60 |
|上海  |黄金会员      |黄金会员3个月 |45 |
|上海  |钻石会员      |钻石会员1个月 |50 |
|上海  |铂金会员      |铂金会员3个月 |60 |
+----+----------+--------+---+

2.grouping sets

a.grouping sets是group by子句更进一步的扩展, 它让你能够定义多个数据分组。这样做使聚合更容易, 并且因此使得多维数据分析更容易。
b.够用grouping sets在同一查询中定义多个分组

    sqlContext.sql("select area,memberType,product,sum(price) as total from orderTempTable group by area,memberType,product grouping sets(area,memberType,product)")

上面的语句输出结果如下,可以看到使用grouping sets(area,memberType,product)会分别对这3个维度进行group by,也可以grouping sets ((area,memberType),(area,product)))此时相当于group by (area,memberType) union group by (area,product),也就是说grouping sets 后面可以指定你想要的各种维度组合。

+----+----------+--------+-----+
|area|memberType|product |total|
+----+----------+--------+-----+
|null|null      |铂金会员3个月 |240  |
|null|铂金会员      |null    |360  |
|上海  |null      |null    |155  |
|null|钻石会员      |null    |520  |
|null|null      |钻石会员12个月|300  |
|null|null      |黄金会员12个月|180  |
|null|null      |钻石会员3个月 |70   |
|null|null      |黄金会员3个月 |135  |
|深圳  |null      |null    |915  |
|null|null      |钻石会员1个月 |150  |
|null|null      |黄金会员1个月 |30   |
|null|黄金会员      |null    |345  |
|北京  |null      |null    |155  |
|null|null      |铂金会员6个月 |120  |
+----+----------+--------+-----+

3.rollup

rollup 是根据维度在数据结果集中进行的聚合操作。
group by A,B,C with rollup首先会对(A、B、C)进行group by,然后对(A、B)进行group by,然后是(A)进行group by,最后对全表进行group by操作。

    sqlContext.sql("select area,memberType,product,sum(price) as total from orderTempTable group by area,memberType,product with rollup")

输出结果中,可以group by A,B,C with rollup,的确是上述几种group by的并集。

+----+----------+--------+-----+
|area|memberType|product |total|
+----+----------+--------+-----+
|上海  |null      |null    |155  |
|北京  |铂金会员      |null    |60   |
|北京  |钻石会员      |null    |50   |
|上海  |钻石会员      |钻石会员1个月 |50   |
|深圳  |黄金会员      |黄金会员1个月 |30   |
|深圳  |钻石会员      |钻石会员12个月|300  |
|北京  |黄金会员      |黄金会员3个月 |45   |
|深圳  |钻石会员      |钻石会员3个月 |70   |
|北京  |铂金会员      |铂金会员3个月 |60   |
|上海  |铂金会员      |null    |60   |
|上海  |钻石会员      |null    |50   |
|深圳  |黄金会员      |null    |255  |
|深圳  |null      |null    |915  |
|上海  |黄金会员      |黄金会员3个月 |45   |
|深圳  |铂金会员      |铂金会员3个月 |120  |
|深圳  |钻石会员      |钻石会员1个月 |50   |
|上海  |铂金会员      |铂金会员3个月 |60   |
|北京  |黄金会员      |null    |45   |
|深圳  |铂金会员      |null    |240  |
|null|null      |null    |1225 |
|深圳  |钻石会员      |null    |420  |
|北京  |null      |null    |155  |
|北京  |钻石会员      |钻石会员1个月 |50   |
|深圳  |黄金会员      |黄金会员12个月|180  |
|深圳  |铂金会员      |铂金会员6个月 |120  |
|深圳  |黄金会员      |黄金会员3个月 |45   |
|上海  |黄金会员      |null    |45   |
+----+----------+--------+-----+

4.cube

group by A,B,C with cube,则首先会对(A、B、C)进行group by,然后依次是(A、B),(A、C),(A),(B、C),(B),( C),最后对全表进行group by操作。

    sqlContext.sql("select area,memberType,product,sum(price) as total from orderTempTable group by area,memberType,product with cube")

+----+----------+--------+-----+
|area|memberType|product |total|
+----+----------+--------+-----+
|深圳  |null      |黄金会员12个月|180  |
|深圳  |null      |钻石会员3个月 |70   |
|深圳  |null      |黄金会员3个月 |45   |
|null|null      |铂金会员3个月 |240  |
|北京  |null      |铂金会员3个月 |60   |
|null|铂金会员      |null    |360  |
|上海  |null      |null    |155  |
|北京  |铂金会员      |null    |60   |
|null|钻石会员      |null    |520  |
|北京  |钻石会员      |null    |50   |
|上海  |钻石会员      |钻石会员1个月 |50   |
|深圳  |黄金会员      |黄金会员1个月 |30   |
|null|null      |钻石会员12个月|300  |
|深圳  |钻石会员      |钻石会员12个月|300  |
|null|黄金会员      |黄金会员12个月|180  |
|null|铂金会员      |铂金会员6个月 |120  |
|null|黄金会员      |黄金会员3个月 |135  |
|深圳  |null      |钻石会员1个月 |50   |
|深圳  |null      |黄金会员1个月 |30   |
|北京  |黄金会员      |黄金会员3个月 |45   |
|null|null      |黄金会员12个月|180  |
|上海  |null      |铂金会员3个月 |60   |
|null|null      |钻石会员3个月 |70   |
|深圳  |钻石会员      |钻石会员3个月 |70   |
|null|null      |黄金会员3个月 |135  |
|北京  |铂金会员      |铂金会员3个月 |60   |
|北京  |null      |黄金会员3个月 |45   |
|上海  |铂金会员      |null    |60   |
|上海  |钻石会员      |null    |50   |
|深圳  |黄金会员      |null    |255  |
|null|黄金会员      |黄金会员1个月 |30   |
|深圳  |null      |null    |915  |
|null|钻石会员      |钻石会员12个月|300  |
|上海  |黄金会员      |黄金会员3个月 |45   |
|深圳  |铂金会员      |铂金会员3个月 |120  |
|null|null      |钻石会员1个月 |150  |
|深圳  |钻石会员      |钻石会员1个月 |50   |
|null|null      |黄金会员1个月 |30   |
|北京  |null      |钻石会员1个月 |50   |
|上海  |铂金会员      |铂金会员3个月 |60   |
|上海  |null      |黄金会员3个月 |45   |
|null|钻石会员      |钻石会员3个月 |70   |
|深圳  |null      |铂金会员6个月 |120  |
|null|黄金会员      |null    |345  |
|北京  |黄金会员      |null    |45   |
|深圳  |null      |铂金会员3个月 |120  |
|深圳  |铂金会员      |null    |240  |
|null|null      |null    |1225 |
|深圳  |钻石会员      |null    |420  |
|北京  |null      |null    |155  |
|null|铂金会员      |铂金会员3个月 |240  |
|上海  |null      |钻石会员1个月 |50   |
|null|钻石会员      |钻石会员1个月 |150  |
|深圳  |null      |钻石会员12个月|300  |
|北京  |钻石会员      |钻石会员1个月 |50   |
|深圳  |黄金会员      |黄金会员12个月|180  |
|深圳  |铂金会员      |铂金会员6个月 |120  |
|深圳  |黄金会员      |黄金会员3个月 |45   |
|null|null      |铂金会员6个月 |120  |
|上海  |黄金会员      |null    |45   |
+----+----------+--------+-----+

5.应用

经过group by、grouping sets、rollup和cube处理过后的数据可以直接存储到MySQL等数据库中。文章开头中提到的需求,可以根据运营提出的筛选维度进行cube分析,就可以得到各种维度组合下的订单统计结果。比如要获取总的定单数。可以如下处理:

    val cubeDF = sqlContext.sql("select area,memberType,product,sum(price) as total from orderTempTable group by area,memberType,product with cube")
cubeDF .registerTempTable("resultTempTable")
//下面SQL执行的结果就是所有订单的总数
 sqlContext.sql("select * from resultTempTable where area=null and memberType=null and product =null")
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,539评论 0 13
  • 专业考题类型管理运行工作负责人一般作业考题内容选项A选项B选项C选项D选项E选项F正确答案 变电单选GYSZ本规程...
    小白兔去钓鱼阅读 9,072评论 0 13
  • group by 用来在原始数据上创建聚合来将数据转化为有用的信息。 基本的group by 列出个个部门的名称...
    猫猫_tomluo阅读 1,275评论 0 6
  • 实现效果 JS叠加、移动、旋转div 实现方式对比 1、添加div2、通过rotate插件实现旋转3、通过键盘监听...
    过桥阅读 2,313评论 0 1
  • 入选时间:2016年8月16日 入选级别:季级 入选理由:袁美凤,女,企业工作人员。进入时间管理名人堂一直是她最大...
    周助人阅读 221评论 0 0