刷题LeetCode:104.二叉树的最大深度

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/

题目描述

给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。

题目分析

提供两种方法实现:

  • BFS(Breath First Search)广度优先搜索
  • DFS(Deep First Search)深度优先搜索

代码实现

public class MaxDepth104 {


    public static void main(String[] args) {
        MaxDepth104 maxDepth = new MaxDepth104();
        TreeNode root = new TreeNode(1, new TreeNode(10), new TreeNode(2, new TreeNode(3), new TreeNode(9, null, new TreeNode(4))));
        maxDepth.maxDepth(root);
        maxDepth.maxDepth2(root);
    }


    /**
     * 广度优先算法
     *
     * @param root
     * @return
     */
    public int maxDepth2(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int depth = 0;
        Queue<TreeNode> queue = new LinkedList();
        queue.offer(root);

        while (!queue.isEmpty()) {

            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode curr = queue.poll();
                if(curr.left != null){
                    queue.offer(curr.left);
                }
                if(curr.right != null){
                    queue.offer(curr.right);
                }
            }

            depth++;
        }

        return depth;
    }

    /**
     * 前序遍历  深度优先算法
     * <p>
     * 时间复杂度:O(n),其中 nnn 为二叉树节点的个数。每个节点在递归中只被遍历一次。
     * <p>
     * 空间复杂度:O(height),其中 height\textit{height}height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。
     *
     * @param root
     * @return
     */
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }

        int leftDepth = maxDepth(root.left);
        int rightDepth = maxDepth(root.right);

        int maxDepth = Math.max(leftDepth, rightDepth) + 1;
        System.out.println(maxDepth);
        return maxDepth;
    }


}

BFS复杂度

  • 时间复杂度:O(n)
  • 空间复杂度:此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到 O(n)

DFS复杂度

  • 时间复杂度:O(n)
  • 空间复杂度:O(height),其中 height 表示二叉树的高度

好了,今天就到这里,感谢各位看官到这里,不如点个关注吧!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,809评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,189评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,290评论 0 359
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,399评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,425评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,116评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,710评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,629评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,155评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,261评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,399评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,068评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,758评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,252评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,381评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,747评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,402评论 2 358

推荐阅读更多精彩内容