Flink - 8 个面试高频实战问题

1.前言

  1. 解决问题的能力:生产环境中,如何快速判断哪个算子存在反压呢?
  2. 解决问题的能力:反压有哪些危害?
  3. 解决问题的能力:经常碰到哪些问题会任务反压?
  4. 解决问题的能力:怎么缓解、解决任务反压的情况?
  5. 数据保障的能力:实时数据延迟是怎么监控的?报警策略又是怎么制定的?
  6. 数据保障的能力:通过什么样的监控及保障手段来保障实时指标的质量?
  7. 原理理解的能力:operator-state 和 keyed-state 两者的区别?最大并行度又和它们有什么关系?举个生产环境中经常出现的案例,当用户停止任务、更新代码逻辑并且改变任务并发度时,两种 state 都是怎样进行恢复的?
  8. 你认为以后 Flink SQL 的发展趋势是 unbounded 类 SQL 为主还是窗口类 SQL 为主?原因?

2.生产环境中,如何快速判断哪个算子存在反压呢?或者说哪个算子出现了性能问题?

将这个问题拆解成多步来分析:

  1. ⭐ 如何知道算子是否有反压?

在 Flink web ui 中,定位到一个具体的算子之后,查看 BackPressure 模块,通过颜色和数值来判断任务的繁忙和反压情况。

若颜色为红色,表示当前算子繁忙,有反压的情况若颜色为绿色,标识当前算子不繁忙,没有反压。

图片
  1. ⭐ 举个实际 Flink 任务案例,这个 Flink 任务中有 Source、FlatMap、Sink 算子,如果 Source 算子有反压,那到底是哪个算子有性能问题呢?

上游算子在 web ui 显示有反压时,一般为下游算子存在性能问题。可以继续往下游排查,如果 FlatMap 也显示有反压,大概率是 Sink 算子存在性能问题;如果 FlatMap 没有显示有反压,大概率是 FlatMap 算子存在性能问题。

  1. ⭐ 大多数时候,Flink 会自动将算子 chain 在一起,那怎么判断具体是哪一个算子有问题?

第一种方式:Flink 提供了断开算子链的能力。

  • ⭐ DataStream API 中:可以使用 disableChaining() 将 chain 在一起的算子链断开。或者配置 pipeline.operator-chaining: false
.process(xxx)
.uid("process")
.disableChaining() // 将算子链进行断开
.addSink(xxx)
.uid("sink");
  • ⭐ SQL API 中:配置 pipeline.operator-chaining: false

CREATE TABLE source_table (
    order_number BIGINT,
    price        DECIMAL(32,2)
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.order_number.min' = '10',
  'fields.order_number.max' = '11'
);

CREATE TABLE sink_table (
    order_number BIGINT,
    price        DECIMAL(32,2)
) WITH (
  'connector' = 'print'
);

insert into sink_table
select * from source_table
where order_number = 10;

我们来看看一个 SQL 任务在配置 pipeline.operator-chaining: false 前后的差异。

在配置 pipeline.operator-chaining: false 前,可以看到所有算子都 chain 在一起

4

在配置 pipeline.operator-chaining: false 后,可以看到所有算子都没有 chain 在一起

1

第二种方式:在 Flink 1.13 中,提供了火焰图,可以通过火焰图定位问题。火焰图需要配置 rest.flamegraph.enabled: true 打开

3

3.反压有哪些危害?

  1. 任务处理性能出现瓶颈:以消费 Kafka 为例,大概率会出现消费 Kafka Lag。
  2. Checkpoint 时间长或者失败:因为某些反压会导致 barrier 需要花很长时间才能对齐,任务稳定性差。
  3. 整个任务完全卡住。比如在 TUMBLE 窗口算子的任务中,反压后可能会导致下游算子的 input pool 和上游算子的 output pool 满了,这时候如果下游窗口的 watermark 一直对不齐,窗口触发不了计算的话,下游算子就永远无法触发窗口计算了。整个任务卡住。

4.经常碰到哪些问题会任务反压?

总结就是:算子的 sub-task 需要处理的数据量 > 能够处理的数据量。一般会实际中会有以下两种问题会导致反压。

  1. 数据倾斜:当前算子的每个 sub-task 只能处理 1w qps 的数据,而由于数据倾斜,这个算子的其中一些 sub-task 平均算下来 1s 需要处理 2w 条数据,但是实际只能处理 1w 条,从而反压。比如有时候 keyby 的 key 设置的不合理。
  2. 算子性能问题:下游整个整个算子 sub-task 的处理性能差,输入是 1w qps,当前算子的 sub-task 算下来平均只能处理 1k qps,因此就有反压的情况。比如算子需要访问外部接口,访问外部接口耗时长。

5.怎么缓解、解决任务反压的情况?

  1. 事前:解决上述介绍到的 数据倾斜算子性能 问题。
  2. 事中:在出现反压时:
  • 限制数据源的消费数据速度。比如在事件时间窗口的应用中,可以自己设置在数据源处加一些限流措施,让每个数据源都能够够匀速消费数据,避免出现有的 Source 快,有的 Source 慢,导致窗口 input pool 打满,watermark 对不齐导致任务卡住。
  • 关闭 Checkpoint。关闭 Checkpoint 可以将 barrier 对齐这一步省略掉,促使任务能够快速回溯数据。我们可以在数据回溯完成之后,再将 Checkpoint 打开。

6.实时数据延迟是怎么监控的?报警策略又是怎么制定的?

几乎我问到的所有的小伙伴都能回到到 Flink 消费 Source 的 Lag 监控,我们可以把这个监控项升级一下,即 Kafka 到 Flink 延迟。原因如下:

以 Flink 消费 Kafka 为例,几乎所有的任务性能问题都最终能反映到 Kafka 消费 Flink 延迟,所以几乎 100% 的任务性能问题都能由 Kafka 到 Flink 延迟 这个监控发现。

大家可以没有其他监控手段,但是这一项非常建议搞

当然也有小伙伴问,具体的实操时,监控项应该怎么设置呢?

很多小伙伴也回答到:Flink 本地时间戳 - Kafka 中自带的时间戳

这时候有小伙伴提到,这个只能反映出 Flink 消费 Kafka 的延迟,那具体数据上的延迟怎么反映出来呢。

群里有小伙伴也回达到:Flink 本地时间戳 - 数据事件时间戳

不说了,小伙伴萌都是 YYDS。

7.通过什么样的监控及保障手段来保障实时指标的质量?

当我提出这个问题的时候。群里的小伙伴给出了建设性意见:

那就是:等着用户工单投诉

但是在博主的正确引导之下,小伙伴萌走上了正轨

这里总结群里小伙伴的一些意见,得出了一个大多数企业都可以 快速构建 实时数据质量保障体系,从 事前、事中、事后 x 任务层面、指标层面 进行监控、保障:

  1. 事前
  • 任务层面:根据峰值流量进行压力测试,并且留一定 buffer,用于事前保障任务在资源层面没有瓶颈
  • 指标层面:根据业务要求,上线实时指标前进行相同口径的实时、离线指标的验数,在实时指标的误差不超过业务阈值时,才达到上线要求
  1. 事中
  • 任务层面:贴源层监控 Kafka 堆积延迟等报警检测手段,用于事中及时发现问题。比如的普罗米修斯监控 Lag 时长
  • 指标层面:根据指标特点实时离线指标结果对比监控。检测到波动过大就报警。比如最简单的方式是可以通过将实时结果导入到离线,然后定时和离线指标对比
  1. 事后
  • 任务层面:对于可能发生的故障类型,构建用于故障修复、数据回溯的实时任务备用链路
  • 指标层面:构建指标修复预案,根据不同的故障类型,判断是否可以使用实时任务进行修复。如果实时无法修复,构建离线恢复链路,以便使用离线数据进行覆写修复

8.operator-state 和 keyed-state 两者的区别?

详细描述一下上面的问题:

operator-state 和 keyed-state 两者的区别?最大并行度又和它们有什么关系?举个生产环境中经常出现的案例,当用户停止任务、更新代码逻辑并且改变任务并发度时,两种 state 都是怎样进行恢复的?

  1. 总结如下:
7
  1. operator-state:
9
  • ⭐ 状态适用算子:所有算子都可以使用 operator-state,没有限制

  • ⭐ 状态的创建方式:如果需要使用 operator-state,需要实现 CheckpointedFunction(建议) 或 ListCheckpointed 接口

  • ⭐ DataStream API 中,operator-state 提供了 ListState、BroadcastState、UnionListState 3 种用户接口

  • ⭐ 状态的存储粒度:以单算子单并行度粒度访问、更新状态

  • ⭐ 并行度变化时:

  • a. ListState:均匀划分到算子的每个 sub-task 上,比如 Flink Kafka Source 中就使用了 ListState 存储消费 Kafka 的 offset,其 rescale 如下图

10
  • b. BroadcastState:每个 sub-task 的广播状态都一样 c. UnionListState:将原来所有元素合并,合并后的数据每个算子都有一份全量状态数据
图片
  1. keyed-state:
  • ⭐ 状态适用算子:keyed-stream 后的算子使用。注意这里很多同学会犯一个错误,就是大家会认为 keyby 后面跟的所有算子都使用的是 keyed-state,但这是错误的 ❌,比如有 keyby.process.flatmap,其中 flatmap 中使用状态的话是 operator-state
  • ⭐ 状态的创建方式:从 context 接口获取具体的 keyed-state
  • ⭐ DataStream API 中,keyed-state 提供了 ValueState、MapState、ListState 等用户接口,其中最常用 ValueState、MapState
  • ⭐ 状态的存储粒度:以单 key 粒度访问、更新状态。举例,当我们使用 keyby.process,在 process 中处理逻辑时,其实每一次 process 的处理 context 都会对应到一个 key,所以在 process 中的处理都是以 key 为粒度的。这里很多同学会犯一个错 ❌,比如想在 open 方法中访问、更新 state,这是不行的,因为 open 方法在执行时,还没有到正式的数据处理环节,上下文中是没有 key 的
  • ⭐ 并行度变化时:keyed-state 的重新划分是随着 key-group 进行的。其中 key-group 的个数就是最大并发度的个数。其中一个 key-group 处理一段区间 key 的数据,不同 key-group 处理的 key 是完全不同的。当任务并行度变化时,会将 key-group 重新划分到算子不同的 sub-task 上,任务启动后,任务数据在做 keyby 进行数据 shuffle 时,依然能够按照当前数据的 key 发到下游能够处理这个 key 的 key-group 中进行处理,如下图所示。注意:最大并行度和 key-group 的个数绑定,所以如果想恢复任务 state,最大并行度是不能修改的****。大家需要提前预估最大并行度个数。
图片
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容