关于奈奎斯特图的一些解读

关于奈奎斯特图的一些解读

如果对\large G(j\omega)H(j\omega)增加一个有限零点(即为传递函数在无穷远处增加一个极点),传递函数的奈奎斯特图会发生一些很有意思的变化,这个变化也是整个奈奎斯特图绘制规则中最难搞的部分,不过即使这样,只要理解的其背后的物理含义,这个变化便很容易,只要用心,你也可以成为奈奎斯特。

为了详细说明这个例子,我们不妨看这样一个传递函数,令

\large G(s)H(s) = \frac{K}{s(T_2s+1)(T_1s+1)}\ \ \ for \ T_2>T_1

其奈奎斯特图很容易可以画出来

奈奎斯特图1

实线表示这个系统的奈奎斯特图,可以看到,在高频情况(\omega\rightarrow \infin)下其输出会滞后输入270°,而且这个270°就是最大的滞后相位,因此奈奎斯特曲线会在第二象限沿着虚轴接近原点。同时也可以看到由于在原点处存在极点,而传递函数的分子为1,不提供任何超前相位,因此奈奎斯特曲线的起点位于第三象限,在一开始相位就滞后了90°。

现在我们来分析添加有限零点的奈奎斯特曲线,由于这个代表零点的一次项可以选取不同的时间常数,因此这个零点对于奈奎斯特曲线的影响也不一样。下面进行逐一分析——增加一个零点\large (T_3s+1),其中

  1. T_3 >T_2 >T_1(\omega_3<\omega_2<\omega_1)

    这种情况下零点的时间常数大于两个极点,换言之,就是零点代表的转折频率最小,因此,在低频区零点的相位超前效应会压过两个极点的相位滞后效应,而让奈奎斯特曲线的起点会从第四象限开始,即在低频区能够减少系统相位滞后的程度,使滞后的相位小于90°。从图上来看就是

    奈奎斯特2

实线表示这种情况下的奈奎斯特曲线

  1. T_3 <T_2 <T_1(\omega_3>\omega_2>\omega_1)

这种情况下刚好和上一种相反,由于零点的时间常数最小,因此零点开始作用的转折频率最大,因此在较高频区(频率大于两个极点的转折频率但小于零点的转折频率)时,系统的相位滞后程度会大于180°,从图上则表现为奈奎斯特曲线会进入第二象限。但由于输入频率到大于零点的转折频率时,系统的相位滞后程度会被拉90°回去,因此这种情况下,奈奎斯特曲线会在第三象限沿着实轴接近原点,如图所示

3

虚线为此时的奈奎斯特曲线

  1. T_2> T_3> T_1(\omega_2<\omega_3<\omega_1)

此时零点的转折频率位于两个极点的转折频率之间,因此此时的奈奎斯特曲线类似于\large G(s)H(s) = \frac{1}{s(T_1s+1)}的奈奎斯特曲线,在\large \omega_1之前的频段,T_2代表的极点产生的效应会和零点的效应相互抵消,反映到图上就是

4

虚线为此时的奈奎斯特曲线。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容

  • 关于二阶振荡因子的伯德图的一些解读 我们在谈到二次振荡因子时,已经默认其阻尼比是介于0到1之间,对于二次振荡因子,...
    White_River阅读 911评论 2 1
  • 16宿命:用概率思维提高你的胜算 以前的我是风险厌恶者,不喜欢去冒险,但是人生放弃了冒险,也就放弃了无数的可能。 ...
    yichen大刀阅读 6,041评论 0 4
  • 公元:2019年11月28日19时42分农历:二零一九年 十一月 初三日 戌时干支:己亥乙亥己巳甲戌当月节气:立冬...
    石放阅读 6,876评论 0 2