2021-09-12

关于二阶振荡因子\large \frac{\omega_n^2}{s^2 + 2\zeta \omega_ns + \omega_n^2}的伯德图的一些解读

图片.png

我们在谈到二次振荡因子时,已经默认其阻尼比\large \zeta是介于0到1之间,对于二次振荡因子,其频率特性\large G(j\omega)H(j\omega)可以写成

                                        $\LARGE \frac{\Large 1}{1+j2\zeta\frac{\omega}{ \omega_n}-(\frac{\omega}{\omega_n})^2}$

所以幅值响应 \LARGE L(\omega) = -20lg\sqrt{[1-(\frac{\omega}{\omega_n})^2]^2+ (\frac{2\zeta \omega}{\omega_n})^2}

\Large (\frac{\omega}{\omega_n}) \ll1 时, \large L(\omega) \approx -20lg1 = 0 (1)

\Large (\frac{\omega}{\omega_n}) \gg1 时, \large L(\omega) \approx -20lg\sqrt{(\frac{\omega}{\omega_n})^4} = -40lg(\frac{\omega}{\omega_n}) (2)

相位特性为

\LARGE \phi(\omega) = -arc \ tan\frac{\frac{2\zeta\omega}{\omega_n}}{1-(\frac{\omega}{\omega_n})^2}

所以大家可以看到,(1)表示的是一条水平横线,而(2)式代表的则是一条斜率为-40(dB/dec)的,过点(1,0)的直线(注意图上的横坐标变量)。我们可以在图上看到这两条渐近线,这两条渐近线分别在低频和高频对振荡因子进行近似,同时相加于(1,0)点,即在\omega = \omega_n处。

但是,由于实际上振荡因子在伯德图上的实际曲线不仅与\omega有关,而且和阻尼比\zeta也有关,当\zeta从0到1变化时,振荡因子实际曲线的变化时很明显的。

这是由于存在着多个方面的原因,比如阻尼比介于0到1之间,系统就有着共振的可能,因此在图上会表现幅值在低频区(小于共振频率时)会存在频率增大,幅值响应也增大的情况,当输入频率达到共振频率时,幅值响应达到最大,此后就开始减小。而且还有更具体的解读——阻尼比越小,则共振频率越接近系统的固有频率\large \omega_n,而且共振频率处幅值响应会增大,这个原因既可以从\large L(\omega)的推导中得出,也可以从系统的零极点分布的相关知识定性地得出。

在输入信号频率等于系统自然频率时,所有系统的输出都会滞后于输入90°,这个内容在奈奎斯特曲线那一节已经叙述过,而且幅值响应会变成\large \frac{1}{2\zeta}

同时阻尼比越小,在低频区系统相位滞后的程度就越低,反映在相频特性曲线上,就是在低频区,阻尼比小的曲线高于阻尼比大的曲线,也就是相位滞后的程度低。但在高频区(\large \omega> \omega_n)则会反过来,这个从奈奎斯特图上比较可以看出来,如果在第三象限,阻尼比大的系统要获得和阻尼比小的系统一样的相位滞后,它必须要用很大的频率,因为在第三象限,阻尼比大的系统的奈奎斯特曲线比阻尼比小的系统的奈奎斯特曲线要短很多。(这是单纯从图上理解的,只是我不明白其中的物理原因是什么)。

为什么上述图的共振几乎都发生在\large \omega_n处呢,不是应该发生在实际的共振频率处呢?

这是因为精度啊,在对数频率特性上,有阻尼共振频率和无阻尼自然频率是同一个数量级的,尤其是\large \zeta \in(0.3,0.8)的时候,所以为了方便起见就这样画了。同时在\large \zeta \in(0.3,0.8)时,实际的(有起伏的)曲线和渐进线是很相似的,所以在这样的情况下渐进线的近似效果还是蛮不错的。同时,为了精确,一般画出渐进线后,都要根据实际的阻尼比,计算出谐振频率\large \omega_p和谐振峰值\large M_p后,对曲线加以修正。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容