机器学习技法第三章

名词:
impulse 脉冲
polynomial 多项式
kernel 核
embeds 嵌入
Gaussian 高斯的
RBF(Radial Basis Function) 径向基函数
kernel function 目的:寻求实现一种不引入d的特征转换,从而去除d影响的方法,方便计算

exp() 高斯函数

泰勒(taylor )展开

半正定矩阵:https://blog.csdn.net/asd136912/article/details/79146151

转自:https://blog.csdn.net/red_stone1/article/details/73930030

上节课我们主要介绍了SVM的对偶形式,即dual SVM。Dual SVM也是一个二次规划问题,可以用QP来进行求解。之所以要推导SVM的对偶形式是因为:首先,它展示了SVM的几何意义;然后,从计算上,求解过程“好像”与所在维度d无关,规避了d很大时难以求解的情况。但是,上节课的最后,我们也提到dual SVM的计算过程其实跟d还是有关系的。那么,能不能完全摆脱对d

的依赖,从而减少SVM计算量呢?这就是我们本节课所要讲的主要内容。

Kernel Trick

我们上节课推导的dual SVM是如下形式:

这里写图片描述

其中α是拉格朗日因子,共N个,这是我们要求解的,而条件共有N+1个。我们来看向量QD中的qn,m=ynymzTnzm,看似这个计算与d无关,但是zTnzm的内积中不得不引入d。也就是说,如果d^很大,计算zTnzm的复杂度也会很高,同样会影响QP问题的计算效率。可以说,qn,m=ynymzTnzm这一步是计算的瓶颈所在。

其实问题的关键在于zTnzm内积求解上。我们知道,z是由x经过特征转换而来:

zTnzm=Φ(xn)Φ(xm)

如果从x空间来看的话,zTnzm分为两个步骤:

  • 1. 进行特征转换Φ(xn)和Φ(xm);
  • 2. 计算Φ(xn)与Φ(xm)的内积。这种先转换再计算内积的方式,必然会引入d参数,从而在d

很大的时候影响计算速度。那么,若把这两个步骤联合起来,是否可以有效地减小计算量,提高计算速度呢?

我们先来看一个简单的例子,对于二阶多项式转换,各种排列组合为:

这里写图片描述

这里提一下,为了简单起见,我们把x0=1包含进来,同时将二次项x1x2和x2x1也包含进来。转换之后再做内积并进行推导,得到:

这里写图片描述

其中xTx′是x空间中特征向量的内积。所以,Φ2(x)与Φ2(x′)的内积的复杂度由原来的O(d2)变成O(d),只与x空间的维度d有关,而与z空间的维度d^无关,这正是我们想要的!

至此,我们发现如果把特征转换和z空间计算内积这两个步骤合并起来,有可能会简化计算。因为我们只是推导了二阶多项式会提高运算速度,这个特例并不具有一般推论性。但是,我们还是看到了希望。

我们把合并特征转换和计算内积这两个步骤的操作叫做Kernel Function,用大写字母K表示。例如刚刚讲的二阶多项式例子,它的kernel function为:

KΦ(x,x′)=Φ(x)TΦ(x′)

KΦ2(x,x′)=1+(xTx′)+(xTx′)2

有了kernel function之后,我们来看看它在SVM里面如何使用。在dual SVM中,二次项系数qn,m中有z的内积计算,就可以用kernel function替换:

qn,m=ynymzTnzm=ynymK(xn,xm)

所以,直接计算出K(xn,xm),再代入上式,就能得到qn,m的值。qn,m值计算之后,就能通过QP得到拉格朗日因子αn。然后,下一步就是计算b(取αn>0的点,即SV),b的表达式中包含z,可以作如下推导:

b=ys−wTzs=ys−(∑n=1Nαnynzn)Tzs=ys−∑n=1Nαnyn(K(xn,xs))

这样得到的b就可以用kernel function表示,而与z空间无关。

最终我们要求的矩gSVM可以作如下推导:

gSVM(x)=sign(wTΦ(x)+b)=sign((∑n=1Nαnynzn)Tz+b)=sign(∑n=1Nαnyn(K(xn,x))+b)

至此,dual SVM中我们所有需要求解的参数都已经得到了,而且整个计算过程中都没有在z空间作内积,即与z无关。我们把这个过程称为kernel trick,也就是把特征转换和计算内积两个步骤结合起来,用kernel function来避免计算过程中受d^的影响,从而提高运算速度。

这里写图片描述

那么总结一下,引入kernel funtion后,SVM算法变成:

这里写图片描述

分析每个步骤的时间复杂度为:

这里写图片描述

我们把这种引入kernel function的SVM称为kernel SVM,它是基于dual SVM推导而来的。kernel SVM同样只用SV(αn>0)就能得到最佳分类面,而且整个计算过程中摆脱了d^的影响,大大提高了计算速度。

Polynomial Kernel

我们刚刚通过一个特殊的二次多项式导出了相对应的kernel,其实二次多项式的kernel形式是多种的。例如,相应系数的放缩构成完全平方公式等。下面列举了几种常用的二次多项式kernel形式:

这里写图片描述

比较一下,第一种Φ2(x)(蓝色标记)和第三种Φ2(x)(绿色标记)从某种角度来说是一样的,因为都是二次转换,对应到同一个z空间。但是,它们系数不同,内积就会有差异,那么就代表有不同的距离,最终可能会得到不同的SVM margin。所以,系数不同,可能会得到不同的SVM分界线。通常情况下,第三种Φ2(x)(绿色标记)简单一些,更加常用。

这里写图片描述

不同的转换,对应到不同的几何距离,得到不同的距离,这是什么意思呢?举个例子,对于我们之前介绍的一般的二次多项式kernel,它的SVM margin和对应的SV如下图(中)所示。对于上面介绍的完全平方公式形式,自由度γ=0.001,它的SVM margin和对应的SV如下图(左)所示。比较发现,这种SVM margin比较简单一些。对于自由度γ=1000,它的SVM margin和对应的SV如下图(右)所示。与前两种比较,margin和SV都有所不同。

这里写图片描述

通过改变不同的系数,得到不同的SVM margin和SV,如何选择正确的kernel,非常重要。

归纳一下,引入ζ≥0和γ>0,对于Q次多项式一般的kernel形式可表示为:

这里写图片描述

所以,使用高阶的多项式kernel有两个优点:

  • 得到最大SVM margin,SV数量不会太多,分类面不会太复杂,防止过拟合,减少复杂度

  • 计算过程避免了对d^

  • 的依赖,大大简化了计算量。

这里写图片描述

顺便提一下,当多项式阶数Q=1时,那么对应的kernel就是线性的,即本系列课程第一节课所介绍的内容。对于linear kernel,计算方法是简单的,而且也是我们解决SVM问题的首选。还记得机器学习基石课程中介绍的奥卡姆剃刀定律(Occam’s Razor)吗?

Gaussian Kernel

刚刚我们介绍的Q阶多项式kernel的阶数是有限的,即特征转换的d^是有限的。但是,如果是无限多维的转换Φ(x),是否还能通过kernel的思想,来简化SVM的计算呢?答案是肯定的。先举个例子,简单起见,假设原空间是一维的,只有一个特征x,我们构造一个kernel function为高斯函数:

K(x,x′)=e−(x−x′)2

构造的过程正好与二次多项式kernel的相反,利用反推法,先将上式分解并做泰勒展开:

这里写图片描述

将构造的K(x,x’)推导展开为两个Φ(x)和Φ(x′)的乘积,其中:

Φ(x)=e−x2⋅(1,21!−−√x,222!−−−√x2,⋯)

通过反推,我们得到了Φ(x),Φ(x)是无限多维的,它就可以当成特征转换的函数,且d^是无限的。这种Φ(x)得到的核函数即为Gaussian kernel。更一般地,对于原空间不止一维的情况(d>1),引入缩放因子γ>0,它对应的Gaussian kernel表达式为:

K(x,x′)=e−γ||x−x′||2

那么引入了高斯核函数,将有限维度的特征转换拓展到无限的特征转换中。根据本节课上一小节的内容,由K,计算得到αn和b,进而得到矩gSVM。将其中的核函数K用高斯核函数代替,得到:

gSVM(x)=sign(∑SVαnynK(xn,x)+b)=sign(∑SVαnyne(−γ||x−xn||2)+b)

通过上式可以看出,gSVM有n个高斯函数线性组合而成,其中n是SV的个数。而且,每个高斯函数的中心都是对应的SV。通常我们也把高斯核函数称为径向基函数(Radial Basis Function, RBF)。

这里写图片描述

总结一下,kernel SVM可以获得large-margin的hyperplanes,并且可以通过高阶的特征转换使Ein尽可能地小。kernel的引入大大简化了dual SVM的计算量。而且,Gaussian kernel能将特征转换扩展到无限维,并使用有限个SV数量的高斯函数构造出矩gSVM。

这里写图片描述

值得注意的是,缩放因子γ取值不同,会得到不同的高斯核函数,hyperplanes不同,分类效果也有很大的差异。举个例子,γ分别取1, 10, 100时对应的分类效果如下:

这里写图片描述

从图中可以看出,当γ比较小的时候,分类线比较光滑,当γ越来越大的时候,分类线变得越来越复杂和扭曲,直到最后,分类线变成一个个独立的小区域,像小岛一样将每个样本单独包起来了。为什么会出现这种区别呢?这是因为γ越大,其对应的高斯核函数越尖瘦,那么有限个高斯核函数的线性组合就比较离散,分类效果并不好。所以,SVM也会出现过拟合现象,γ的正确选择尤为重要,不能太大。

Comparison of Kernels

目前为止,我们已经介绍了几种kernel,下面来对几种kernel进行比较。

首先,Linear Kernel是最简单最基本的核,平面上对应一条直线,三维空间里对应一个平面。Linear Kernel可以使用上一节课介绍的Dual SVM中的QP直接计算得到。

这里写图片描述

Linear Kernel的优点是计算简单、快速,可以直接使用QP快速得到参数值,而且从视觉上分类效果非常直观,便于理解;缺点是如果数据不是线性可分的情况,Linear Kernel就不能使用了。

这里写图片描述

然后,Polynomial Kernel的hyperplanes是由多项式曲线构成。

这里写图片描述

Polynomial Kernel的优点是阶数Q可以灵活设置,相比linear kernel限制更少,更贴近实际样本分布;缺点是当Q很大时,K的数值范围波动很大,而且参数个数较多,难以选择合适的值。

这里写图片描述

对于Gaussian Kernel,表示为高斯函数形式。

这里写图片描述

Gaussian Kernel的优点是边界更加复杂多样,能最准确地区分数据样本,数值计算K值波动较小,而且只有一个参数,容易选择;缺点是由于特征转换到无限维度中,w没有求解出来,计算速度要低于linear kernel,而且可能会发生过拟合。

这里写图片描述

除了这三种kernel之外,我们还可以使用其它形式的kernel。首先,我们考虑kernel是什么?实际上kernel代表的是两笔资料x和x’,特征变换后的相似性即内积。但是不能说任何计算相似性的函数都可以是kernel。有效的kernel还需满足几个条件:

  • K是对称的

  • K是半正定的

这两个条件不仅是必要条件,同时也是充分条件。所以,只要我们构造的K同时满足这两个条件,那它就是一个有效的kernel。这被称为Mercer 定理。事实上,构造一个有效的kernel是比较困难的。

这里写图片描述

总结

本节课主要介绍了Kernel Support Vector Machine。首先,我们将特征转换和计算内积的操作合并到一起,消除了d^的影响,提高了计算速度。然后,分别推导了Polynomial Kernel和Gaussian Kernel,并列举了各自的优缺点并做了比较。对于不同的问题,应该选择合适的核函数进行求解,以达到最佳的分类效果。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352