单例模式大家应该都不陌生,只要写过一些代码的,估计天天用,好处也自然不多说,有些对象创建一个就够了,比如数据库或者网络的连接,创建一个就够了。实现单例模式需要做到:
- 构造方法私有化
- 静态方法返回实例
- 当心多线程会创建多个实例
- 小心反序列化时会创建多个实例
方法一:类初始化的时候就创建
package disignpattern;
public class Singleton1 {
private static Singleton1 instance = new Singleton1();
private Singleton1() {
}
private static Singleton1 getInstance() {
return instance;
}
}
这种方式简单粗暴,但是缺点是用不到的时候也可能初始化。
方法二:使用的时候创建
package disignpattern;
public class Singleton2 {
private static Singleton2 instance = null;
private Singleton2() {
}
private synchronized static Singleton2 getInstance() {
if (instance == null) {
instance = new Singleton2();
}
return instance;
}
}
这里需要注意多线程的问题,需要将初始化的代码加一个锁,不过这里这种方式是一种粗粒度的加锁方式,效率不是很高,也可以这么写,效果一样:
package disignpattern;
public class Singleton3 {
private static Singleton3 instance = null;
private Singleton3() {
}
private static Singleton3 getInstance() {
synchronized (Singleton3.class) {
if (instance == null) {
instance = new Singleton3();
}
}
return instance;
}
}
网上有一种针对这个的优化版本:
package disignpattern;
public class Singleton4 {
private static volatile Singleton4 instance = null;
private Singleton4() {
}
private static Singleton4 getInstance() {
if (instance == null) {
synchronized (Singleton4.class) {
if (instance == null) {
instance = new Singleton4();
}
}
}
return instance;
}
}
这个方法有一个高大上的名词叫双重校验锁,instance被volatile修饰说明instance任何时候拿到的都是最新的值(可见性),所以如果instance不是null(大部分时候)都不需要进入锁,因为锁比较耗时,所以这样是一个优化。
方式三:使用枚举创建
package disignpattern;
public enum Singleton5 {
INSTANCE;
public static Singleton5 getInstance() {
return INSTANCE;
}
}
这也是《java编程思想》里面推荐的单例模式实现方式,实现非常简单。
方法四:内部静态类
package disignpattern;
public class Singleton6 {
static class SingletonHolder {
private static Singleton6 instance = new Singleton6();
}
public static Singleton6 getInstance() {
return SingletonHolder.instance;
}
}
这个方式算是方法一的升级版,由于内部类在外部类被加载的时候不会立即被加载,只有当getInstance被调用时才加载内部类,所以算是对方法一的一个延迟版本。
一开始说到的反序列化是什么回事呢?
我们看一段代码:
package disignpattern;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
public class Singleton1 implements Serializable {
private static final long sericlVersionUID = 1L;
private static Singleton1 instance = new Singleton1();
private Singleton1() {
}
private static Singleton1 getInstance() {
return instance;
}
public static void main(String[] args) throws Exception {
FileOutputStream fileOutputStream = null;
ObjectOutputStream objectOutputStream = null;
try {
fileOutputStream = new FileOutputStream("/tmp/Singleton");
objectOutputStream = new ObjectOutputStream(fileOutputStream);
objectOutputStream.writeObject(instance);
} finally {
objectOutputStream.flush();
objectOutputStream.close();
fileOutputStream.close();
}
FileInputStream fileInputStream = null;
ObjectInputStream objectInputStream = null;
Singleton1 s = null;
try {
fileInputStream = new FileInputStream("/tmp/Singleton");
objectInputStream = new ObjectInputStream(fileInputStream);
s = (Singleton1) objectInputStream.readObject();
} finally {
objectInputStream.close();
fileInputStream.close();
}
System.out.println( s == instance);
}
}
这个输出false,也就是说反序列化的时候单例模式失效了,这是为啥?底层原理我看了网上资料说是反射,没有去读源码来深究,想想反射是可以实现的,这也是为啥单例模式会失效了,所以推荐的是枚举模式,枚举就算反射也没法创建多个实例。针对这个问题,我们可以通过在单例的类中实现一个readResolve方法就行,至于原理,我们下回分析序列化的时候可以一起分析一下。
package disignpattern;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
public class Singleton1 implements Serializable {
private static final long sericlVersionUID = 1L;
private static Singleton1 instance = new Singleton1();
private Singleton1() {
}
private static Singleton1 getInstance() {
return instance;
}
public static void main(String[] args) throws Exception {
FileOutputStream fileOutputStream = null;
ObjectOutputStream objectOutputStream = null;
try {
fileOutputStream = new FileOutputStream("/tmp/Singleton");
objectOutputStream = new ObjectOutputStream(fileOutputStream);
objectOutputStream.writeObject(instance);
} finally {
objectOutputStream.flush();
objectOutputStream.close();
fileOutputStream.close();
}
FileInputStream fileInputStream = null;
ObjectInputStream objectInputStream = null;
Singleton1 s = null;
try {
fileInputStream = new FileInputStream("/tmp/Singleton");
objectInputStream = new ObjectInputStream(fileInputStream);
s = (Singleton1) objectInputStream.readObject();
} finally {
objectInputStream.close();
fileInputStream.close();
}
System.out.println( s == instance);
}
private Object readResolve() {
return instance;
}
}