hadoop模块

HDFS存储多目录

1.在DataNode节点增加磁盘并进行挂载

2.在hdfs-site.xml文件中配置多目录,注意新挂载磁盘的访问权限问题。

<property>
    <name>dfs.datanode.data.dir</name>
<value>file:///${hadoop.tmp.dir}/dfs/data1,file:///hd2/dfs/data2,file:///hd3/dfs/data3,file:///hd4/dfs/data4</value>
</property>

3.增加磁盘后,保证每个目录数据均衡

开启数据均衡命令:

#参数10,代表的是集群中各个节点的磁盘空间利用率相差不超过10%
bin/start-balancer.sh –threshold 10

均衡之后停止任务,释放内存空间

bin/stop-balancer.sh

支持LZO压缩配置

1)hadoop本身并不支持lzo压缩,故需要使用twitter提供的hadoop-lzo开源组件。hadoop-lzo需依赖hadoop和lzo进行编译,编译步骤如下。

Hadoop支持LZO

  1. 环境准备
    maven(下载安装,配置环境变量,修改sitting.xml加阿里云镜像)
    gcc-c++
    zlib-devel
    autoconf
    automake
    libtool
    通过yum安装即可,yum -y install gcc-c++ lzo-devel zlib-devel autoconf automake libtool

  2. 下载、安装并编译LZO

wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.10.tar.gz

tar -zxvf lzo-2.10.tar.gz

cd lzo-2.10

./configure -prefix=/usr/local/hadoop/lzo/

make

make install

  1. 编译hadoop-lzo源码

2.1 下载hadoop-lzo的源码,下载地址:https://github.com/twitter/hadoop-lzo/archive/master.zip
2.2 解压之后,修改pom.xml
<hadoop.current.version>2.7.2</hadoop.current.version>
2.3 声明两个临时环境变量
export C_INCLUDE_PATH=/usr/local/hadoop/lzo/include
export LIBRARY_PATH=/usr/local/hadoop/lzo/lib
2.4 编译
进入hadoop-lzo-master,执行maven编译命令
mvn package -Dmaven.test.skip=true
2.5 进入target,hadoop-lzo-0.4.21-SNAPSHOT.jar 即编译成功的hadoop-lzo组件

2)将编译好后的lzo的jar包放入$HADOOP_HOMEshare/hadoop/common/

3)同步jar到集群其他节点

4)core-site.xml增加配置支持LZO压缩

<configuration>
<property>
<name>io.compression.codecs</name>
<value>
org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
org.apache.hadoop.io.compress.SnappyCodec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec
</value>
</property>

<property>
    <name>io.compression.codec.lzo.class</name>
    <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>
</configuration>

5)同步core-site.xml到集群其他节点

LZO创建索引

创建LZO文件的索引,LZO压缩文件的可切片特性依赖于其索引,故我们需要手动为LZO压缩文件创建索引。若无索引,则LZO文件的切片只有一个。

对集群中的LZO文件创建索引

hadoop jar hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /input/bigtable.lzo

HDFS读写压测

读瓶颈 网络(hdfs副本) 写瓶颈 磁盘性能

1) 测试HDFS写性能

image.png
# 测试内容:向HDFS集群写10个128M的文件
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -write -nrFiles 10 -fileSize 128MB      10=(总核数-1)

#结果
2020-04-16 13:41:24,724 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write
2020-04-16 13:41:24,724 INFO fs.TestDFSIO:             Date & time: Thu Apr 16 13:41:24 CST 2020
2020-04-16 13:41:24,724 INFO fs.TestDFSIO:         Number of files: 10
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:  Total MBytes processed: 1280
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:       Throughput mb/sec: 8.88  # 吞吐量 
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:  Average IO rate mb/sec: 8.96    # 文件IO平均速率
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:   IO rate std deviation: 0.87
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:      Test exec time sec: 67.61
# 集群吞吐量   = () *集群节点数

2)测试HDFS读性能

# 测试内容:读取HDFS集群10个128M的文件
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -read -nrFiles 10 -fileSize 128MB

3)删除测试生成数据

hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -clean

Hadoop参数调优

1)HDFS参数调优hdfs-site.xml

dfs.namenode.handler.count=20 * log2(Cluster Size)

# 参数说明
The number of Namenode RPC server threads that listen to requests from clients. If dfs.namenode.servicerpc-address is not configured then Namenode RPC server threads listen to requests from all nodes.
# NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作。对于大集群或者有大量客户端的集群来说,通常需要增大参数dfs.namenode.handler.count的默认值10。设置该值的一般原则是将其设置为集群大小的自然对数乘以20,即20logN,N为集群大小。

2)YARN参数调优yarn-site.xml

(1)情景描述:总共7台机器,每天几亿条数据,数据源->Flume->Kafka->HDFS->Hive

面临问题:数据统计主要用HiveSQL,没有数据倾斜,小文件已经做了合并处理,开启的JVM重用,而且IO没有阻塞,内存用了不到50%。但是还是跑的非常慢,而且数据量洪峰过来时,整个集群都会宕掉。基于这种情况有没有优化方案。

(2)解决办法:

内存利用率不够。这个一般是Yarn的2个配置造成的,单个任务可以申请的最大内存大小,和Hadoop单个节点可用内存大小。调节这两个参数能提高系统内存的利用率。

(a)yarn.nodemanager.resource.memory-mb
# 表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。

(b)yarn.scheduler.maximum-allocation-mb
# 单个任务可申请的最多物理内存量,默认是8192(MB)。

默认内存

  1. NM默认内存 8G

  2. 单任务默认内存 8G

  3. mapTask默认内存 1g

  4. reduceTask 1G

  5. 默认一个切片128M 对应一个maptask 默认1G内存

    1G 数据 1024/128 个maptask maptask内存= 8G 单任务内存默认8G

    2G 数据 2048/128 maptask需要16G 那么需要调单任务默认内存>16G NM内存也需要调节

Hadoop宕机

(1)如果MR造成宕机

此时要控制Yarn同时运行的任务数,和每个任务申请的最大内存。调整参数:yarn.scheduler.maximum-allocation-mb(单个任务可申请的最多物理内存量,默认是8192MB)

(2)如果写入文件过量造成NameNode宕机。

那么调高Kafka的存储大小,控制从Kafka到HDFS的写入速度。高峰期的时候用Kafka进行缓存,高峰期过去数据同步会自动跟上。

如Flume (调节batchSize)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容