损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系

cross_entropy-----交叉熵是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。

在介绍softmax_cross_entropy,binary_cross_entropy、sigmoid_cross_entropy之前,先来回顾一下信息量、熵、交叉熵等基本概念。

---------------------

信息论

交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

一、信息量

首先是信息量。假设我们听到了两件事,分别如下:

事件A:巴西队进入了2018世界杯决赛圈。

事件B:中国队进入了2018世界杯决赛圈。

仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

二、什么是熵

对于某个事件,有n种可能性,每一种可能性都有一个概率p(xi)

这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

注:文中的对数均为自然对数

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:

其中n代表所有的n种可能性,所以上面的问题结果就是

二、 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]

KL散度的计算公式:


三、什么是交叉熵

交叉熵

对式3.1变形可以得到:


其中p代表label或者叫groundtruth,q代表预测值

在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即

由于KL散度中的前一部分恰巧就是p的熵,p代表label或者叫groundtruth,故−H(p(x))不变,故在优化过程中,只需要关注交叉熵就可以了,所以一般在机器学习中直接用用交叉熵做loss,评估模型。

交叉熵


四、softmax_cross_entropy

以tensorflow中函数softmax_cross_entropy_with_logits为例,在二分类或者类别相互排斥多分类问题,计算 logits 和 labels 之间的 softmax 交叉熵

数据必须经过 One-Hot Encoding 编码

tf.one_hot

用 mnist 数据举例,如果是目标值是3,那么 label 就是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0。

该函数把一个维度上的 labels 作为一个整体判断,结果给出整个维度的损失值

这个函数传入的 logits 是 unscaled 的,既不做 sigmoid 也不做 softmax ,因为函数实现会在内部更高效得使用 softmax 。

softmax_cross_entropy_with_logits计算过程

1、对输入进行softmax


softmax公式

举个例子:假设你的输入S=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属于第1,2,3类的概率分别是0.09,0.24,0.67。

2、计算交叉熵


交叉熵公式

L是损失,Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。yj前面有个求和符号,j的范围也是1到类别数T,因此label——y是一个1*T的向量,里面的T个值,而且只有1个值是1,其他T-1个值都是0。真实标签对应的位置的那个值是1,其他都是0。所以这个公式其实有一个更简单的形式:


来举个例子吧。假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.1,0.15,0.05,0.6,0.1],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.15,0.2,0.4,0.1,0.15],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别3),对应损失L=-log(0.1)。

补充:sparse_softmax_cross_entropy_with_logits

sparse_softmax_cross_entropy_with_logits 是 softmax_cross_entropy_with_logits 的易用版本,除了输入参数不同,作用和算法实现都是一样的。

区别是:softmax_cross_entropy_with_logits 要求传入的 labels 是经过 one_hot encoding 的数据,而 sparse_softmax_cross_entropy_with_logits 不需要。


五、binary_cross_entropy

binary_cross_entropy是二分类的交叉熵,实际是多分类softmax_cross_entropy的一种特殊情况,当多分类中,类别只有两类时,即0或者1,即为二分类,二分类也是一个逻辑回归问题,也可以套用逻辑回归的损失函数。

1、利用softmax_cross_entropy_with_logits来计算二分类的交叉熵

来举个例子,假设一个2分类问题,假如一个batch包含两个样本,那么标签要制成二维,形如

y=[ [1, 0],[0, 1] ]

模型预测输出也为二维,形如

p=[ [0.8,0.2],[0.4,0.6] ]  #(softmax的输出)

那么对应的损失

L=( -log(0.8) - log(0.6) ) / 2

实际在计算中若采用softmax_cross_entropy_with_logits函数,不要事先做softmax处理。


2、套用逻辑回归代价损失函数来计算二分类的交叉熵

逻辑回归的损失函数如下:

来举个例子,假设一个2分类问题,假如一个batch包含两个样本,那么标签要制成一维,形如

y=[0,1 ]

模型预测输出也为一维,形如

p=[ 0.2,0.6 ]  #sigmoid的输出,这里一定要预先用sigmod处理,将预测结果限定在0~1之间,

那么对应的损失

L=( - 0*log(0.2) - (1 - 0)*log(1- 0.2) - log(0.6) - (1 -1)*log(1 - 0.6) ) / 2 = ( -log(0.8) - log(0.6) ) / 2



六、sigmoid_cross_entropy

以tensorflow中函数sigmoid_cross_entropy_with_logits为例说明

sigmoid_cross_entropy_with_logits函数,测量每个类别独立且不相互排斥的离散分类任务中的概率。(可以执行多标签分类,其中图片可以同时包含大象和狗。)

import tensorflow as tf

_logits = [[0.5, 0.7, 0.3], [0.8, 0.2, 0.9]]

_one_labels = tf.ones_like(_logits)

# [[1 1 1]   

#  [1 1 1]]   

_zero_labels = tf.zeros_like(_logits)

# [[0 0 0]   

#  [0 0 0]]   

with tf.Session() as sess:

        loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=_logits, labels=_one_labels)

        print(sess.run(loss))

        # [[0.47407699  0.40318602  0.5543552]   

        #  [0.37110069  0.59813887  0.34115386]]   

        loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=_logits, labels=_zero_labels)

        print(sess.run(loss))

          # [[0.97407699  1.10318601  0.85435522]   

          #  [1.17110074  0.79813886  1.24115384]]


看看sigmoid_cross_entropy_with_logits函数定义

def sigmoid_cross_entropy_with_logits(_sentinel=None,  labels=None, logits=None,  name=None):

#为了描述简洁,规定 x = logits,z = labels,那么 Logistic 损失值为:

      z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))

      = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))

      = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))

      = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))

      = (1 - z) * x + log(1 + exp(-x))

      = x - x * z + log(1 + exp(-x))

该函数与 softmax_cross_entropy_with_logits的区别在于:softmax_cross_entropy_with_logits中的labels 中每一维只能包含一个 1,sigmoid_cross_entropy_with_logits中的labels 中每一维可以包含多个 1。

softmax_cross_entropy_with_logits函数把一个维度上的 labels 作为一个整体判断,结果给出整个维度的损失值,而 sigmoid_cross_entropy_with_logits 是每一个元素都有一个损失值,都是一个二分类(binary_cross_entropy)问题。


参考:https://www.cnblogs.com/guqiangjs/p/8202899.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容