CV学习笔记(五):ROI与泛洪填充

在这篇文章里我们将会学习ROI与泛洪填充

一:ROI

ROI(region of interest),中文翻译过来就是感兴趣区域,在机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,这一部分区域被我们称之为感兴趣区域。

ROI选定的这个区域一般是我们所关注的重点,圈定该区域后我们可以进行进一步的处理,在一定程度上可以减少工作量。

ROI主要应用在视频监控领域,最常见的为ROI智能视频编码技术,具有ROI功能的摄像机可以让用户选择画面中感兴趣的区域,启用ROI功能后,重要的或者移动的区域将会进行高质量无损编码, 而对那些不移动,不被选择的区域降低其码率和图像质量,进行标准清晰度视频压缩,甚至是不传输这部分区域视频,达到节省网络带宽占用和视频存储空间。

现在我们使用OpenCV来进行实操:

在代码中,我们选择 选择50:180行、100:220列区域作为截取对象,首先先生成灰度图,这里的灰度图是单通道图像,后续将单通道图像转换为三通道RGB灰度图,因为只有三通道的backface才可以赋给三通道的src,有一点需要注意,COLOR_RGB2GRAY是把三通道RGB对象转换为单通道灰度对象!!!

得到结果如下:

可以看到Windows的logo被灰色圈出,这一个logo可以被称之为我们的ROI区域。

二:泛洪填充

泛洪填充算法(Flood Fill Algorithm),泛洪填充算法又称洪水填充算法,这是在很多图形绘制软件中常用的填充算法,最熟悉不过就是windows paint的油漆桶功能。算法的原理很简单,就是从一个点开始附近像素点,填充成新的颜色,直到封闭区域内的所有像素点都被填充新颜色为止。泛红填充实现最常见有四邻域像素填充法,八邻域像素填充法,基于扫描线的像素填充方法。根据实现又可以分为递归与非递归(基于栈)。

我们可以理解为泛洪填充是一种彩色图像填充。

①:FLOODFILL_FIXED_RANGE – 改变图像,泛洪填充

代码如下:

在代码里,有几个点需要注意

1:我们设置的图片(mask)都是为uin8类型的单通道阵列,另外为何mask中需要+2,因为当从0行0列开始泛洪填充扫描时,mask多出来的2可以保证扫描的边界上的像素都会被处理。

2:floodFill函数 floodFill(image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]])

Image: 表示输入/输出1或3通道,8位或浮点图像。

Mask:表示掩码,该掩码是单通道8位图像,比image的高度多2个像素,宽度多2个像素。填充时不能穿过输入掩码中的非零像素。

seedPoint:表示泛洪算法(漫水填充算法)的起始点。

newVal参数表示在重绘区域像素的新值。

loDiff参数表示当前观察像素值与其部件邻域像素值或待加入该组件的种子像素之间的亮度或颜色之负差的最大值。

upDiff参数表示当前观察像素值与其部件邻域像素值或待加入该组件的种子像素之间的亮度或颜色之正差的最大值。

flags参数:操作标志符,包含三部分:

低八位(0~7位):用于控制算法的连通性,可取4(默认)或8。

中间八位(8~15位):用于指定掩码图像的值,但是如果中间八位为0则掩码用1来填充。

高八位(16~32位):可以为0或者如下两种标志符的组合:

LOODFILL_FIXED_RANGE:表示此标志会考虑当前像素与种子像素之间的差,否则就考虑当前像素与相邻像素的差。

FLOODFILL_MASK_ONLY:表示函数不会去填充改变原始图像,而是去填充掩码图像mask,mask指定的位置为零时才填充,不为零不填充。

在图像中,我们以(30,30)为起点开始计算:

得到结果如下:

在下一篇文章中,我们将继续学习图像的模糊操作与二值化处理,希望大家好好试验,一起加油!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容