Spark 异步Action

What if we want to execute 2 actions concurrently on different RDD’s, Spark actions are always synchronous. Like if we perform two actions one after other they always execute in sequentially like one after other.
Let see example

val rdd = sc.parallelize(List(32, 34, 2, 3, 4, 54, 3), 4)
rdd.collect().map{ x => println("Items in the lists:" + x)}
val rddCount = sc.parallelize(List(434, 3, 2, 43, 45, 3, 2), 4)
println("Number of items in the list" + rddCount.count())

In the above exmaple 2 actions are perform one after other collect and count, both are execute synchronous. So count will always execute after collect will finish. The out of the above code is as follows


Now question is if we want to run spark jobs concurrently in async fashion.
So for above question answer is simple apache spark also provide a asyn action for concurrent execution of jobs, Few Asynchronous actions spark provide as follows
collectAsync() -> Returns a future for retrieving all elements of this RDD.countAsync() -> Returns a future for counting the number of elements in the RDD.foreachAsync(scala.Function1<T,scala.runtime.BoxedUnit> f) -> Applies a function f to all elements of this RDD.foreachPartitionAsync(scala.Function1<scala.collection.Iterator,scala.runtime.BoxedUnit> f) ->Applies a function f to each partition of this RDD.takeAsync(int num) -> Returns a future for retrieving the first num elements of the RDD.
Now let us see what happen when we use async actions.

val rdd = sc.parallelize(List(32, 34, 2, 3, 4, 54, 3), 4)
rdd.collectAsync().map{ x => x.map{x=> println("Items in the list:"+x)} }
val rddCount = sc.parallelize(List(434, 3, 2, 43, 45, 3, 2), 4)
rddCount.countAsync().map { x =>println("Number of items in the list: "+x) }

So output of the above code is as follows


You can see in above output the result of the second job is come first because first job return future and execute second one but still have you noticed that jobs are execute one after other that’s means a job use all resources of cluster so another job will delayed.
So for take full advantage of Asynchronous jobs we need to configure job scheduler.
Job Scheduling
By default spark scheduler run spark jobs in FIFO (First In First Out) fashion. In FIFO scheduler the priority is given to the first job and then second and so on. If the jobs is not using whole cluster then second job is also run parallel but if first job is too big then second job will wait soo long even it take too less to execute. So for solution spark provide fair scheduler, fair scheduler jobs will execute in “round robin” fashion.
To configure job scheduler we need to set configuration for it as follows
val conf = new SparkConf().setAppName("spark_auth").setMaster("local[*]").set("spark.scheduler.mode", "FAIR")
After configure FAIR scheduling you can see both the jobs are running concurrently and share resources of the spark cluster.
So after this the out of the above code is as follows
Screenshot from 2015-10-21 13:35:53
Screenshot from 2015-10-21 13:35:53

You can see in above result both jobs are running concurrently. The result of both the actions are not wait for each other.
For above code you can checkout: https://github.com/knoldus/spark-scala-async

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,467评论 0 23
  • 今天一个人去超市,晚风阵阵,毕竟已经春天了。去的时候太阳还在恋恋不舍,回来的时候天空一片灰暗,无星无月。我一直觉得...
    冷璞阅读 349评论 1 4
  • 人生就是一场漫长的比赛而对手就是你自己是的就是一个人的比赛你可以平心静气的也可以心焦气燥的 就算场上有那么多人那也...
    哈哈同学阅读 224评论 0 1
  • 1、第一:社群应该尽量避免在群内交流过多无聊的话题,会直接影响用户的情绪。 2、第二:多借用工具来管理社群,例如:...
    明天会是晴天阅读 556评论 0 1
  • 前些日子,微信群里聊到大学生这个话题。我特别认怂的说了句,我不是大学生。然后简单几句,描述了当年的状况。 考砸了,...
    陳若心阅读 1,962评论 0 1