2019-07-09 ComplexHeatmap包绘制OncoPrint和UpSet图

选自ComplexHeatmap 完全指南

https://jokergoo.github.io/ComplexHeatmap-reference/book/

作者是鼎鼎大名的Zuguang Gu,最后修订于 2019-07-03

用Github安装最新版的ComplexHeatmap

library(devtools)
install_github("jokergoo/ComplexHeatmap")

电子书中包含的内容如下

This chapter describes the configurations of a single heatmap.

This chapter describes the concept of the heatmap annotation and demonstrates how to make simple annotations as well as complex annotations. Also, the chapter explains the difference between column annotations and row annotations.

This chapter describes how to concatenate a list of heatmaps and annotations and how adjustment is applied to keep the correspondence of the heatmaps.

This chapter describes how to configurate the heatmap legends and annotation legends, also how to create self-defined legends.

This chapter describes methods to add more self-defined graphics to the heatmaps after the heatmaps are generated.

This chapter describes how to make oncoPrints and how to integrate other functionalities from ComplexHeatmap to oncoPrints.

This chapter describes how to make enhanced UpSet plots.

This chapter describes functions implemented in ComplexHeatmap for specific use, e.g. visualizing distributions.

More simulated and real-world examples are demonstrated in this chapter.

下面节选一些好看的图片和源代码用于展示其奇妙之处

Chapter 7 OncoPrint

image.png

好多文章都有这样突变基因的热图,代码如下

1. 获取TCGA的数据集

mat = read.table(system.file("extdata", package = "ComplexHeatmap", 
    "tcga_lung_adenocarcinoma_provisional_ras_raf_mek_jnk_signalling.txt"), 
    header = TRUE, stringsAsFactors = FALSE, sep = "\t")
mat[is.na(mat)] = ""
rownames(mat) = mat[, 1]
mat = mat[, -1]
mat=  mat[, -ncol(mat)]
mat = t(as.matrix(mat))
mat[1:3, 1:3]
##      TCGA-05-4384-01 TCGA-05-4390-01 TCGA-05-4425-01
## KRAS "  "            "MUT;"          "  "           
## HRAS "  "            "  "            "  "           
## BRAF "  "            "  "            "  "

2. 为不同的突变形式定义图形的添加方式

col = c("HOMDEL" = "blue", "AMP" = "red", "MUT" = "#008000")
alter_fun = list(
    background = function(x, y, w, h) {
        grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"), 
            gp = gpar(fill = "#CCCCCC", col = NA))
    },
    # big blue
    HOMDEL = function(x, y, w, h) {
        grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"), 
            gp = gpar(fill = col["HOMDEL"], col = NA))
    },
    # bug red
    AMP = function(x, y, w, h) {
        grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"), 
            gp = gpar(fill = col["AMP"], col = NA))
    },
    # small green
    MUT = function(x, y, w, h) {
        grid.rect(x, y, w-unit(0.5, "mm"), h*0.33, 
            gp = gpar(fill = col["MUT"], col = NA))
    }
)
column_title = "OncoPrint for TCGA Lung Adenocarcinoma, genes in Ras Raf MEK JNK signalling"
heatmap_legend_param = list(title = "Alternations", at = c("HOMDEL", "AMP", "MUT"), 
        labels = c("Deep deletion", "Amplification", "Mutation"))

3. 绘图,简单吧!

ht_list = oncoPrint(mat,
    alter_fun = alter_fun, col = col, 
    column_title = column_title, heatmap_legend_param = heatmap_legend_param) +
Heatmap(matrix(rnorm(nrow(mat)*10), ncol = 10), name = "expr", width = unit(4, "cm"))
draw(ht_list, row_split = sample(c("a", "b"), nrow(mat), replace = TRUE))

Chapter 8 UpSet plot

用于多个数据集的比较,可以完美替代Venn图


image.png

这是一个六个电影数据集的比较,如果用Venn图简直不能直视,但是用Upset就可以完美解决这个问题

1.导入数据集

movies = read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), 
    header = TRUE, sep = ";")
head(movies)
##                                 Name ReleaseDate Action Adventure Children
## 1                   Toy Story (1995)        1995      0         0        1
## 2                     Jumanji (1995)        1995      0         1        1
## 3            Grumpier Old Men (1995)        1995      0         0        0
## 4           Waiting to Exhale (1995)        1995      0         0        0
## 5 Father of the Bride Part II (1995)        1995      0         0        0
## 6                        Heat (1995)        1995      1         0        0
##   Comedy Crime Documentary Drama Fantasy Noir Horror Musical Mystery
## 1      1     0           0     0       0    0      0       0       0
## 2      0     0           0     0       1    0      0       0       0
## 3      1     0           0     0       0    0      0       0       0
## 4      1     0           0     1       0    0      0       0       0
## 5      1     0           0     0       0    0      0       0       0
## 6      0     1           0     0       0    0      0       0       0
##   Romance SciFi Thriller War Western AvgRating Watches
## 1       0     0        0   0       0      4.15    2077
## 2       0     0        0   0       0      3.20     701
## 3       1     0        0   0       0      3.02     478
## 4       0     0        0   0       0      2.73     170
## 5       0     0        0   0       0      3.01     296
## 6       0     0        1   0       0      3.88     940

2.绘图,很简单就完成!

m = make_comb_mat(movies, top_n_sets = 6, remove_complement_set = TRUE)
UpSet(m)
image.png

绘制基因表达矩阵

library(ComplexHeatmap)
library(circlize)

expr = readRDS(system.file(package = "ComplexHeatmap", "extdata", "gene_expression.rds"))
mat = as.matrix(expr[, grep("cell", colnames(expr))])
base_mean = rowMeans(mat)
mat_scaled = t(apply(mat, 1, scale))

type = gsub("s\\d+_", "", colnames(mat))
ha = HeatmapAnnotation(type = type, annotation_name_side = "left")

ht_list = Heatmap(mat_scaled, name = "expression", row_km = 5, 
    col = colorRamp2(c(-2, 0, 2), c("green", "white", "red")),
    top_annotation = ha, 
    show_column_names = FALSE, row_title = NULL, show_row_dend = FALSE) +
Heatmap(base_mean, name = "base mean", 
    top_annotation = HeatmapAnnotation(summary = anno_summary(gp = gpar(fill = 2:6), 
        height = unit(2, "cm"))),
    width = unit(15, "mm")) +
rowAnnotation(length = anno_points(expr$length, pch = 16, size = unit(1, "mm"), 
    axis_param = list(at = c(0, 2e5, 4e5, 6e5), 
        labels = c("0kb", "200kb", "400kb", "600kb")),
    width = unit(2, "cm"))) +
Heatmap(expr$type, name = "gene type", 
    top_annotation = HeatmapAnnotation(summary = anno_summary(height = unit(2, "cm"))),
    width = unit(15, "mm"))

ht_list = rowAnnotation(block = anno_block(gp = gpar(fill = 2:6, col = NA)), 
    width = unit(2, "mm")) + ht_list

draw(ht_list, ht_gap = unit(5, "mm"))
image.png

绘制麻疹疫苗热图

mat = readRDS(system.file("extdata", "measles.rds", package = "ComplexHeatmap"))
ha1 = HeatmapAnnotation(
    dist1 = anno_barplot(
        colSums(mat), 
        bar_width = 1, 
        gp = gpar(col = "white", fill = "#FFE200"), 
        border = FALSE,
        axis_param = list(at = c(0, 2e5, 4e5, 6e5, 8e5),
            labels = c("0", "200k", "400k", "600k", "800k")),
        height = unit(2, "cm")
    ), show_annotation_name = FALSE)
ha2 = rowAnnotation(
    dist2 = anno_barplot(
        rowSums(mat), 
        bar_width = 1, 
        gp = gpar(col = "white", fill = "#FFE200"), 
        border = FALSE,
        axis_param = list(at = c(0, 5e5, 1e6, 1.5e6),
            labels = c("0", "500k", "1m", "1.5m")),
        width = unit(2, "cm")
    ), show_annotation_name = FALSE)
year_text = as.numeric(colnames(mat))
year_text[year_text %% 10 != 0] = ""
ha_column = HeatmapAnnotation(
    year = anno_text(year_text, rot = 0, location = unit(1, "npc"), just = "top")
)
col_fun = colorRamp2(c(0, 800, 1000, 127000), c("white", "cornflowerblue", "yellow", "red"))
ht_list = Heatmap(mat, name = "cases", col = col_fun,
    cluster_columns = FALSE, show_row_dend = FALSE, rect_gp = gpar(col= "white"), 
    show_column_names = FALSE,
    row_names_side = "left", row_names_gp = gpar(fontsize = 8),
    column_title = 'Measles cases in US states 1930-2001\nVaccine introduced 1961',
    top_annotation = ha1, bottom_annotation = ha_column,
    heatmap_legend_param = list(at = c(0, 5e4, 1e5, 1.5e5), 
        labels = c("0", "50k", "100k", "150k"))) + ha2
draw(ht_list, ht_gap = unit(3, "mm"))
decorate_heatmap_body("cases", {
    i = which(colnames(mat) == "1961")
    x = i/ncol(mat)
    grid.lines(c(x, x), c(0, 1), gp = gpar(lwd = 2, lty = 2))
    grid.text("Vaccine introduced", x, unit(1, "npc") + unit(5, "mm"))
})
image.png

绘制甲基化图谱,这个比较复杂😝

In this example, Figure 1 in Strum et al., 2012 is re-implemented with some adjustments.

Some packages need to be loaded firstly.

library(matrixStats)
library(GenomicRanges)

Methylation profiles can be download from GEO database. The [GEOquery package]
(http://bioconductor.org/packages/release/bioc/html/GEOquery.html) is used to retrieve data from GEO.

library(GEOquery)
gset = getGEO("GSE36278")

The methylation profiles have been measured by Illumina HumanMethylation450 BeadChip arrays. We load probe data via the IlluminaHumanMethylation450kanno.ilmn12.hg19 package.

Adjust row names in the matrix to be the same as the probes.
library("IlluminaHumanMethylation450kanno.ilmn12.hg19")
data(Locations)

mat = exprs(gset[[1]])
colnames(mat) = phenoData(gset[[1]])@data$title
mat = mat[rownames(Locations), ] 

probe contains locations of probes and also information whether the CpG sites overlap with SNPs. Here we remove probes that are on sex chromosomes and probes that overlap with SNPs.

data(SNPs.137CommonSingle)
data(Islands.UCSC)
l = Locations$chr %in% paste0("chr", 1:22) & is.na(SNPs.137CommonSingle$Probe_rs)
mat = mat[l, ]

Get subsets for locations of probes and the annotation to CpG Islands accordingly.

cgi = Islands.UCSC$Relation_to_Island[l]
loc = Locations[l, ]

Separate the matrix into a matrix for tumor samples and a matrix for normal samples. Also modify column names for the tumor samples to be consistent with the phenotype data which we will read later.

mat1 = as.matrix(mat[, grep("GBM", colnames(mat))])   # tumor samples
mat2 = as.matrix(mat[, grep("CTRL", colnames(mat))])  # normal samples
colnames(mat1) = gsub("GBM", "dkfz", colnames(mat1))

Phenotype data is from Sturm et al., 2012, supplementary table S1 and can be found here.

The rows of phenotype data are adjusted to be the same as the columns of the methylation matrix.

phenotype = read.table("data/450K_annotation.txt", header = TRUE, sep = "\t", 
    row.names = 1, check.names = FALSE, comment.char = "", stringsAsFactors = FALSE)
phenotype = phenotype[colnames(mat1), ]

Please note that we only use the 136 samples which are from DKFZ, while in Sturm et al., 2012, additional 74 TCGA samples have been used.

Extract the top 8000 probes with most variable methylation in the tumor samples, and also subset other information correspondingly.

ind = order(rowVars(mat1, na.rm = TRUE), decreasing = TRUE)[1:8000]
m1 = mat1[ind, ]
m2 = mat2[ind, ]
cgi2 = cgi[ind]
cgi2 = ifelse(grepl("Shore", cgi2), "Shore", cgi2)
cgi2 = ifelse(grepl("Shelf", cgi2), "Shelf", cgi2)
loc = loc[ind, ]

For each probe, find the distance to the closest TSS. pc_tx_tss.bed contains positions of TSS from protein coding genes.

gr = GRanges(loc[, 1], ranges = IRanges(loc[, 2], loc[, 2]+1))
tss = read.table("data/pc_tx_tss.bed", stringsAsFactors = FALSE)
tss = GRanges(tss[[1]], ranges = IRanges(tss[, 2], tss[, 3]))

tss_dist = distanceToNearest(gr, tss)
tss_dist = tss_dist@elementMetadata$distance

Because there are a few NA in the matrix (sum(is.na(m1))/length(m1) = 0.0011967) which will break the cor() function, we replace NA to the intermediate methylation (0.5). Note that although ComplexHeatmap allows NA in the matrix, removal of NA will speed up the clustering.

m1[is.na(m1)] = 0.5
m2[is.na(m2)] = 0.5

The following annotations will be added to the columns of the methylation matrix:

  1. age
  2. subtype classification by DKFZ
  3. subtype classification by TCGA
  4. subtype classification by TCGA, based on expression profile
  5. IDH1 mutation
  6. H3F3A mutation
  7. TP53 mutation
  8. chr7 gain
  9. chr10 loss
  10. CDKN2A deletion
  11. EGFR amplification
  12. PDGFRA amplification

In following code we define the column annotation in the ha variable. Also we customize colors, legends and height of the annotations.

mutation_col = structure(names = c("MUT", "WT", "G34R", "G34V", "K27M"), 
    c("black", "white", "#4DAF4A", "#4DAF4A", "#377EB8"))
cnv_col = c("gain" = "#E41A1C", "loss" = "#377EB8", "amp" = "#E41A1C", 
    "del" = "#377EB8", "normal" = "white")
ha = HeatmapAnnotation(
    age = anno_points(phenotype[[13]], 
        gp = gpar(col = ifelse(phenotype[[13]] > 20, "black", "red")), 
        height = unit(3, "cm")),
    dkfz_cluster = phenotype[[1]],
    tcga_cluster = phenotype[[2]],
    tcga_expr = phenotype[[3]],
    IDH1 = phenotype[[5]],
    H3F3A = phenotype[[4]],
    TP53 = phenotype[[6]],
    chr7_gain = ifelse(phenotype[[7]] == 1, "gain", "normal"),
    chr10_loss = ifelse(phenotype[[8]] == 1, "loss", "normal"),
    CDKN2A_del = ifelse(phenotype[[9]] == 1, "del", "normal"),
    EGFR_amp = ifelse(phenotype[[10]] == 1, "amp", "normal"),
    PDGFRA_amp = ifelse(phenotype[[11]] == 1, "amp", "normal"),
    col = list(dkfz_cluster = structure(names = c("IDH", "K27", "G34", "RTK I PDGFRA", 
            "Mesenchymal", "RTK II Classic"), brewer.pal(6, "Set1")),
        tcga_cluster = structure(names = c("G-CIMP+", "Cluster #2", "Cluster #3"), 
            brewer.pal(3, "Set1")),
        tcga_expr = structure(names = c("Proneural", "Classical", "Mesenchymal"), 
            c("#377EB8", "#FFFF33", "#FF7F00")),
        IDH1 = mutation_col,
        H3F3A = mutation_col,
        TP53 = mutation_col,
        chr7_gain = cnv_col,
        chr10_loss = cnv_col,
        CDKN2A_del = cnv_col,
        EGFR_amp = cnv_col,
        PDGFRA_amp = cnv_col),
    na_col = "grey", border = TRUE,
    show_legend = c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE),
    show_annotation_name = FALSE,
    annotation_legend_param = list(
        dkfz_cluster = list(title = "DKFZ Methylation"),
        tcga_cluster = list(title = "TCGA Methylation"),
        tcga_expr = list(title = "TCGA Expression"),
        H3F3A = list(title = "Mutations"),
        chr7_gain = list(title = "CNV"))
)

In the final plot, there are four heatmaps added. From left to right, there are

  1. heatmap for methylation in tumor samples
  2. methylation in normal samples
  3. distance to nearest TSS
  4. CpG Island (CGI) annotation.

The heatmaps are split by rows according to CGI annotations.

After the heatmaps are plotted, additional graphics such as labels for annotations are added by decorate_*() functions.

col_fun = colorRamp2(c(0, 0.5, 1), c("#377EB8", "white", "#E41A1C"))
ht_list = Heatmap(m1, col = col_fun, name = "Methylation",
    clustering_distance_columns = "spearman",
    show_row_dend = FALSE, show_column_dend = FALSE,
    show_column_names = FALSE,
    bottom_annotation = ha, column_title = qq("GBM samples (n = @{ncol(m1)})"),
    row_split = factor(cgi2, levels = c("Island", "Shore", "Shelf", "OpenSea")), 
    row_title_gp = gpar(col = "#FFFFFF00")) + 
Heatmap(m2, col = col_fun, show_column_names = FALSE, 
    show_column_dend = FALSE, column_title = "Controls",
    show_heatmap_legend = FALSE, width = unit(1, "cm")) +
Heatmap(tss_dist, name = "tss_dist", col = colorRamp2(c(0, 2e5), c("white", "black")), 
    width = unit(5, "mm"),
    heatmap_legend_param = list(at = c(0, 1e5, 2e5), labels = c("0kb", "100kb", "200kb"))) + 
Heatmap(cgi2, name = "CGI", show_row_names = FALSE, width = unit(5, "mm"),
    col = structure(names = c("Island", "Shore", "Shelf", "OpenSea"), c("red", "blue", "green", "#CCCCCC")))
draw(ht_list, row_title = paste0("DNA methylation probes (n = ", nrow(m1), ")"),
    annotation_legend_side = "left", heatmap_legend_side = "left")

annotation_titles = c(dkfz_cluster = "DKFZ Methylation",
    tcga_cluster = "TCGA Methylation",
    tcga_expr = "TCGA Expression",
    IDH1 = "IDH1",
    H3F3A = "H3F3A",
    TP53 = "TP53",
    chr7_gain = "Chr7 gain",
    chr10_loss = "Chr10 loss",
    CDKN2A_del = "Chr10 loss",
    EGFR_amp = "EGFR amp",
    PDGFRA_amp = "PDGFRA amp")
for(an in names(annotation_titles)) {
    decorate_annotation(an, {
        grid.text(annotation_titles[an], unit(-2, "mm"), just = "right")
        grid.rect(gp = gpar(fill = NA, col = "black"))
    })
}
decorate_annotation("age", {
    grid.text("Age", unit(8, "mm"), just = "right")
    grid.rect(gp = gpar(fill = NA, col = "black"))
    grid.lines(unit(c(0, 1), "npc"), unit(c(20, 20), "native"), gp = gpar(lty = 2))
})
decorate_annotation("IDH1", {
    grid.lines(unit(c(-40, 0), "mm"), unit(c(1, 1), "npc"))
})
decorate_annotation("chr7_gain", {
    grid.lines(unit(c(-40, 0), "mm"), unit(c(1, 1), "npc"))
})
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,451评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,172评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,782评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,709评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,733评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,578评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,320评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,241评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,686评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,878评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,992评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,715评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,336评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,912评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,040评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,173评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,947评论 2 355

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,332评论 0 10
  • The Inner Game of Tennis W Timothy Gallwey Jonathan Cape ...
    网事_79a3阅读 12,073评论 3 20
  • 今天下午我们上语文课的时候,王老师说要玩击鼓传花的游戏,王老师说要是老师敲鼓停下的话,谁就要说出自己的烦恼...
    宋佳怡2班阅读 187评论 0 5
  • 梦见我在当保姆,女主人不喜欢我,男主人还好,那小男孩可喜欢我了,可惜是个病孩子,体质太弱,经常生病,只有我哄着才能...
    梦语心声阅读 187评论 0 0
  • 水彩不知道怎么画。。。。。
    芬妮梦阅读 643评论 12 11