Spring Cloud Data Flow用Shell来操作,方便建立CICD

1 前言

欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章!

之前我们用两篇文章讲解了Spring Cloud Data Flow,例子都是用UI操作的,但我们在Linux系统上经常是无法提供界面来操作,集成在Jenkins上也无法使用UI。好在官方提供了Data Flow Shell工具,可以在命令行模式下进行操作,非常方便。

相关文章可参考:

Spring Cloud Data Flow初体验,以Local模式运行

把Spring Cloud Data Flow部署在Kubernetes上,再跑个任务试试

Spring Cloud Data Flow Server提供了可操作的REST API,所以这个Shell工具的本质还是通过调用REST API来交互的。

2 常用操作

2.1 启动

首先要确保我们已经安装有Java环境和下载了可执行的jar包:spring-cloud-dataflow-shell-2.5.3.RELEASE.jar

然后启动如下:

$ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar

默认是连接了http://localhost:9393Server,可以通过--dataflow.uri=地址来指定。如果需要认证信息,需要加上--dataflow.username=用户 --dataflow.password=密码

比如我们连接之前安装在Kubernetes上的Server如下:

$ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar --dataflow.uri=http://localhost:30093

2.2 Application操作

介绍一下Application相关操作:

列出所有目前注册的app

dataflow:>app list
╔═══╤══════╤═════════╤════╤════════════════════╗
║app│source│processor│sink│        task        ║
╠═══╪══════╪═════════╪════╪════════════════════╣
║   │      │         │    │composed-task-runner║
║   │      │         │    │timestamp-batch     ║
║   │      │         │    │timestamp           ║
╚═══╧══════╧═════════╧════╧════════════════════╝

查看某个app的信息:

dataflow:>app info --type task timestamp

清除app注册信息:

dataflow:>app unregister --type task timestamp
Successfully unregistered application 'timestamp' with type 'task'.

清除所有app注册信息:

dataflow:>app all unregister
Successfully unregistered applications.
dataflow:>app list 
No registered apps.
You can register new apps with the 'app register' and 'app import' commands.

注册一个app

dataflow:>app register --name timestamp-pkslow --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE
Successfully registered application 'task:timestamp-pkslow'
dataflow:>app list
╔═══╤══════╤═════════╤════╤════════════════╗
║app│source│processor│sink│      task      ║
╠═══╪══════╪═════════╪════╪════════════════╣
║   │      │         │    │timestamp-pkslow║
╚═══╧══════╧═════════╧════╧════════════════╝

批量导入app,可以从一个URL或一个properties文件导入:

dataflow:>app import https://dataflow.spring.io/task-docker-latest
Successfully registered 3 applications from [task.composed-task-runner, task.timestamp.metadata, task.composed-task-runner.metadata, task.timestamp-batch.metadata, task.timestamp-batch, task.timestamp]

需要注意的是,在注册或导入app时,如果重复的话,默认是无法导入的,不会覆盖。如果想要覆盖,可以加参数--force

dataflow:>app register --name timestamp-pkslow --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE
Command failed org.springframework.cloud.dataflow.rest.client.DataFlowClientException: The 'task:timestamp-pkslow' application is already registered as docker:springcloudtask/timestamp-task:2.1.1.RELEASE
The 'task:timestamp-pkslow' application is already registered as docker:springcloudtask/timestamp-task:2.1.1.RELEASE

dataflow:>app register --name timestamp-pkslow --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE --force
Successfully registered application 'task:timestamp-pkslow'

2.3 Task操作

列出task

dataflow:>task list
╔════════════════╤════════════════════════════════╤═══════════╤═══════════╗
║   Task Name    │        Task Definition         │description│Task Status║
╠════════════════╪════════════════════════════════╪═══════════╪═══════════╣
║timestamp-pkslow│timestamp                       │           │COMPLETE   ║
║timestamp-two   │<t1: timestamp || t2: timestamp>│           │ERROR      ║
║timestamp-two-t1│timestamp                       │           │COMPLETE   ║
║timestamp-two-t2│timestamp                       │           │COMPLETE   ║
╚════════════════╧════════════════════════════════╧═══════════╧═══════════╝

删除一个task,这里我们删除的是一个组合task,所以会把子task也一并删除了:

dataflow:>task destroy timestamp-two
Destroyed task 'timestamp-two'

删除所有task,会有风险提示:

dataflow:>task all destroy 
Really destroy all tasks? [y, n]: y
All tasks destroyed

dataflow:>task list
╔═════════╤═══════════════╤═══════════╤═══════════╗
║Task Name│Task Definition│description│Task Status║
╚═════════╧═══════════════╧═══════════╧═══════════╝

创建一个task

dataflow:>task create timestamp-pkslow-t1 --definition "timestamp --format=\"yyyy\"" --description "pkslow timestamp task"
Created new task 'timestamp-pkslow-t1'

启动一个task并查看状态,启动时需要记录执行ID,然后通过执行ID来查询状态:

dataflow:>task launch timestamp-pkslow-t1
Launched task 'timestamp-pkslow-t1' with execution id 8
dataflow:>task execution status 8

查看所有task执行并查看执行日志:

dataflow:>task execution list 


dataflow:>task execution log 8

  .   ____          _            __ _ _
 /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
  '  |____| .__|_| |_|_| |_\__, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot ::       (v2.1.13.RELEASE)

2020-08-01 17:20:51.626  INFO 1 --- [       Thread-5] com.zaxxer.hikari.HikariDataSource       : HikariPool-1 - Shutdown initiated...
2020-08-01 17:20:51.633  INFO 1 --- [       Thread-5] com.zaxxer.hikari.HikariDataSource       : HikariPool-1 - Shutdown completed.

2.4 Http请求

可以进行http请求:

dataflow:>http get https://www.pkslow.com

dataflow:>http post --target https://www.pkslow.com --data "data"
> POST (text/plain) https://www.pkslow.com data
> 405 METHOD_NOT_ALLOWED

Error sending data 'data' to 'https://www.pkslow.com'

2.5 读取并执行文件

先准备一个脚本文件,用来放Data Flow Shell命令,文件名为pkslow.shell,内容如下:

version
date
app list

执行与结果如下:

dataflow:>script pkslow.shell
version
2.5.3.RELEASE
date
Sunday, August 2, 2020 1:59:34 AM CST
app list
╔═══╤══════╤═════════╤════╤════════════════════╗
║app│source│processor│sink│        task        ║
╠═══╪══════╪═════════╪════╪════════════════════╣
║   │      │         │    │timestamp-pkslow    ║
║   │      │         │    │composed-task-runner║
║   │      │         │    │timestamp-batch     ║
║   │      │         │    │timestamp           ║
╚═══╧══════╧═════════╧════╧════════════════════╝

Script required 0.045 seconds to execute
dataflow:>

但其实我们在CI/CDpipeline中,并不想先启动一个shell命令行,然后再执行一个脚本。我们想一步到位,直接执行,执行完毕后退出shell命令行。这也是有办法的,可以在启动的时候通过--spring.shell.commandFile指定文件,如果有多个文件则用逗号,分隔。如下所示:

$ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar --dataflow.uri=http://localhost:30093 --spring.shell.commandFile=pkslow.shell
Successfully targeted http://localhost:30093
2020-08-02T02:03:49+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - 2.5.3.RELEASE
2020-08-02T02:03:49+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Sunday, August 2, 2020 2:03:49 AM CST
2020-08-02T02:03:49+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:309 - 
╔═══╤══════╤═════════╤════╤════════════════════╗
║app│source│processor│sink│        task        ║
╠═══╪══════╪═════════╪════╪════════════════════╣
║   │      │         │    │timestamp-pkslow    ║
║   │      │         │    │composed-task-runner║
║   │      │         │    │timestamp-batch     ║
║   │      │         │    │timestamp           ║
╚═══╧══════╧═════════╧════╧════════════════════╝
$

执行完毕后,不会在shell命令行模式里,而是退回linux的终端。这正是我们所需要的。

我们来准备一个注册应用——创建任务——执行任务的脚本试试:

version
date
app register --name pkslow-app-1 --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE
task create pkslow-task-1 --definition "pkslow-app-1"
task launch pkslow-task-1

执行与结果如下:

$ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar --dataflow.uri=http://localhost:30093 --spring.shell.commandFile=pkslow.shell
Successfully targeted http://localhost:30093
2020-08-02T02:06:41+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - 2.5.3.RELEASE
2020-08-02T02:06:41+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Sunday, August 2, 2020 2:06:41 AM CST
2020-08-02T02:06:41+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Successfully registered application 'task:pkslow-app-1'
2020-08-02T02:06:42+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Created new task 'pkslow-task-1'
2020-08-02T02:06:51+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Launched task 'pkslow-task-1' with execution id 9

这样,我们就可以实现自动化打包与部署运行了。

3 一些使用技巧

强大的shell工具提供了许多命令,其实不用一一记住,可以通过help命令查看所有命令:

dataflow:>help

如果只对特定的一类命令感兴趣,可以通过help xxx的方式获取帮助:

dataflow:>help version
* version - Displays shell version

dataflow:>help app
* app all unregister - Unregister all applications
* app default - Change the default application version
* app import - Register all applications listed in a properties file
* app info - Get information about an application
* app list - List all registered applications
* app register - Register a new application
* app unregister - Unregister an application

shell还支持tab键补全命令。

4 总结

本文的命令比较多,不想造成冗长,部分执行结果就不贴出来了,原文可到官网参考。


欢迎关注微信公众号<南瓜慢说>,将持续为你更新...

多读书,多分享;多写作,多整理。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352