机器学习入门(5)--梯度下降算法

申明:此文章内容来自于 Doctor AndrewNG的视频,经过编辑而成

问题提出:虽然给定一个假设函数,我们能够根据cost function知道这个假设函数拟合的好不好,但是毕竟函数有这么多,总不可能一个一个试吧?因此我们引出了梯度下降:能够找出cost function函数的最小值;

梯度下降背后的思想是:开始时我们随机选择一个参数的组合(θ0,θ1,...,θn),计算代价函数,然后我们寻找下一个能让代价函数值下降最多的参数组合。我们持续这么做直到到到一个局部最小值(local minimum)。直白的话说,梯度下降原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快。如图所示。

梯度下降示意图

具体做法:

(1)先确定向下一步的步伐大小,我们称为Learning rate;

(2)任意给定一个初始值:;

(3)确定一个向下的方向,并向下走预先规定的步伐,并更新初始值;

(4)当下降的高度小于某个定义的值,则停止下降;

更新初始值的方法:用 θj 减去α乘以这一部分,如下图。关于这个公式,我来详细讲解一下(1)符号 := 表示赋值 这是一个赋值运算符。(2) α 是一个数字 被称为学习速率 什么是α呢? 在梯度下降算法中 它控制了 我们下山时会迈出多大的步子。

梯度下降的参数更新

直白解释上述公式:上述公式就是给出更新θj的方法使得其逼近θj'。期望结果是:当θj大于θj'时,需要减少θj;当θj小于θj'时,需要增加θj,当θj等于θj'时,θj保持不变。那这个公式如何做到呢?首先α是个正数,其次J(θ0,θ1)是代价函数,而对代价函数的导数θj,就是说代价函数在θj的点的斜率,也就是刚好与函数曲线相切的这条直线。

当θj大于θj'时,J(θ0,θ1)的导数是正数,应用公式θj减去一个正数,此时θj变小;当θj小于θj'是,J(θ0,θ1)的导数是负数,应用公式θj减去一个负数,此时θj变大;当θj等于θj'是,J(θ0,θ1)的导数是0,应用公式θj减去0,此时θj把持不变,从而完成θj的更新。这也解释了为什么即使学习速率α 保持不变时 梯度下降也可以收敛到局部最低点。

那么α发挥什么作用呢?

根据上述公式,他主要在调节θj逼近最小值得速率。如果α太小,即选的学习速率太小,结果就是一点点地挪动去努力接近最低点,这样就需要很多步才能到达最低点,所以如果α太小的话,可能会很慢 ,因为它会一点点挪动,它会需要很多步才能到达全局最低点。示意图如下:

学习率低导致逼近速度慢

如果α太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果α太大,它会导致无法收敛,甚至发散,示意图如下:

学习率高导致overshoot the minimum

特点:

(1)初始点不同,获得的最小值也不同,因为我们并没有尝试完所有的参数组合,所以不能确定我们得到的局部最小值是否便是全局最小值(global minimum)

(2)当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度。


总结一下,在梯度下降法中 当我们接近局部最低点时,梯度下降法会自动采取,更小的幅度 这是因为当我们接近局部最低点时 很显然在局部最低时导数等于零。所以当接近局部最低时 导数值会自动变得越来越小 所以梯度下降将自动采取较小的幅度 这就是梯度下降的做法 所以实际上没有必要再另外减小α 这就是梯度下降算法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容