深度学习实战视频教程+资料全套

─1-9

│      1、课程:多层感知机DNN.1、浅层网络的问题.mp4

│      1、课程:多层感知机DNN.2、涌现现象与深度网络为何高效.mp4

│      1、课程:多层感知机DNN.3、计算图.mp4

│      1、课程:多层感知机DNN.4、导数的反向传播.mp4

│      2、课程:梯度下降法.1、梯度下降的直观例子(一).mp4

│      2、课程:梯度下降法.2、梯度下降的直观例子(二).mp4

│      2、课程:梯度下降法.3、梯度下降的代码实现.mp4

│      2、课程:梯度下降法.4、梯度实现的数学证明.mp4

│      2、课程:梯度下降法.5、从优化的层次到机器学习.mp4

│      2、课程:梯度下降法.6、梯度下降的变体—动量梯度下降法及代码实现.mp4

│      3、课程:BP算法.1、反向传播算法的数学推导.mp4

│      3、课程:BP算法.2、反向传播算法的代码实现.mp4

│      3、课程:BP算法.3、链式法则.mp4

│      3、课程:BP算法.4、反向传播算法在神经网络中的应用代码展示(一).mp4

│      3、课程:BP算法.5、反向传播算法在神经网络中的应用代码展示(二).mp4

│      4、课程:卷积神经网络.1、卷积神经网络的历史.mp4

│      4、课程:卷积神经网络.2、图像识别中的滤镜与卷积.mp4

│      4、课程:卷积神经网络.3、卷积操作的代码展示.mp4

│      4、课程:卷积神经网络.4、图像识别的传统方法及其问题(一).mp4

│      4、课程:卷积神经网络.5、图像识别的传统方法及其问题(二).mp4

│      4、课程:卷积神经网络.6、卷积是如何提取特征的、卷积网络的生物学机理.mp4

│      4、课程:卷积神经网络.7、引入激活函数以提取非线性特征.mp4

│      4、课程:卷积神经网络.8、池化操作与层层抽象.mp4

│      4、课程:卷积神经网络.9、卷积神经网络的训练方法.mp4

│      5、课程:PyTorch(上).1、PyTorch中的基本概念—变量.mp4

│      5、课程:PyTorch(上).2、PyTorch中的反向求导.mp4

│      5、课程:PyTorch(上).3、网络视角下的线性模型、PyTorch对神经网络的支持包.mp4

│      5、课程:PyTorch(上).4、PyTorch中的优化器和损失函数.mp4

│      5、课程:PyTorch(上).5、逻辑回归的问题介绍.mp4

│      5、课程:PyTorch(上).6、用类的方法实现逻辑斯蒂回归.mp4

│      5、课程:PyTorch(上).7、多层网络的模型构建流程、神经网络的参数初始化.mp4

│      5、课程:PyTorch(上).8、Drop out在神经网络中的应用和实现.mp4

│      6、课程:PyTorch(下).10、构建卷积网络的代码讲解.mp4

│      6、课程:PyTorch(下).11、卷积网络中的全连接层.mp4

│      6、课程:PyTorch(下).12、神经网络的训练与测试及训练的效果展示.mp4

│      6、课程:PyTorch(下).1、梯度下降法在PyTorch中的实现.mp4

│      6、课程:PyTorch(下).2、动量化梯度下降的原理和实现.mp4

│      6、课程:PyTorch(下).3、两个参数问题下的优化面临的问题.mp4

│      6、课程:PyTorch(下).4、自适应的梯度下降及流平均改进法.mp4

│      6、课程:PyTorch(下).5、Adam算法.mp4

│      6、课程:PyTorch(下).6、PyTorch中的优化器选择.mp4

│      6、课程:PyTorch(下).7、PyTorch里的图像预处理与可视化.mp4

│      6、课程:PyTorch(下).8、CNN要调节的主要参数(一).mp4

│      6、课程:PyTorch(下).9、CNN要调节的主要参数(二).mp4

│      7、课程:CNN进化.1、AlexNet的技术细节.mp4

│      7、课程:CNN进化.2、VGG19.mp4

│      7、课程:CNN进化.3、深度网络中的梯度消失问题.mp4

│      7、课程:CNN进化.4、残差网络的定义.mp4

│      7、课程:CNN进化.5、残差网络的数学原理.mp4

│      8、课程:BatchNormalization.1、批量正则化怎么做.mp4

│      8、课程:BatchNormalization.2、为什么批量标准化比标准化好.mp4

│      8、课程:BatchNormalization.3、阈值变换如何应对过拟合.mp4

│      8、课程:BatchNormalization.4、批量标准化的操作是怎么进行的.mp4

│      9、课程:Resnet残差网络.1、如何提取中间变量.mp4

│      9、课程:Resnet残差网络.2、在pytorch中引入批量正则化.mp4

│      9、课程:Resnet残差网络.3、批标准化的效果展示.mp4

│      9、课程:Resnet残差网络.4、1-1卷积的含义和效果(一).mp4

│      9、课程:Resnet残差网络.5、1-1卷积的含义和效果(二).mp4

│      9、课程:Resnet残差网络.6、构建残差网络的每个子模块.mp4

│      9、课程:Resnet残差网络.7、在网络中引入残差层.mp4

│      9、课程:Resnet残差网络.8、残差网络的维度变换.mp4

│      9、课程:Resnet残差网络.9、如何实例化深度残差网络.mp4

│     

├─10-18

│      10、课程:图像识别综述.1、图像标记.mp4

│      10、课程:图像识别综述.2、目标检测.mp4

│      10、课程:图像识别综述.3、图像切割.mp4

│      10、课程:图像识别综述.4、图像变换.mp4

│      10、课程:图像识别综述.5、图像降噪和恢复.mp4

│      10、课程:图像识别综述.6、图像聚类与生成.mp4

│      11、课程:迁移学习.10、神经风格迁移(二).mp4

│      11、课程:迁移学习.11、神经风格迁移(三).mp4

│      11、课程:迁移学习.12、神经风格迁移(四).mp4

│      11、课程:迁移学习.1、迁移学习的用途.mp4

│      11、课程:迁移学习.2、迁移学习的种类.mp4

│      11、课程:迁移学习.3、猫狗大战实例之数据读取和预处理.mp4

│      11、课程:迁移学习.4、对比展示迁移学习的效果.mp4

│      11、课程:迁移学习.5、如何导入之前的模型.mp4

│      11、课程:迁移学习.6、连接特征网络和分类网络.mp4

│      11、课程:迁移学习.7、如何逐层训练.mp4

│      11、课程:迁移学习.8、使用detach分开训练网络.mp4

│      11、课程:迁移学习.9、神经风格迁移(一).mp4

│      12、课程:对抗网络.1、生成式模型.mp4

│      12、课程:对抗网络.2、自编码器.mp4

│      12、课程:对抗网络.3、对抗学习引入.mp4

│      12、课程:对抗网络.4、对抗学习的损失函数.mp4

│      12、课程:对抗网络.5、卷机对抗网络.mp4

│      12、课程:对抗网络.6、对抗训练的难点及应用(一).mp4

│      12、课程:对抗网络.7、对抗训练的难点及应用(二).mp4

│      13、课程:时间序列分析.10、使用LSTM进行时间序列预测.mp4

│      13、课程:时间序列分析.1、时间序列是什么.mp4

│      13、课程:时间序列分析.2、时间序列的预处理.mp4

│      13、课程:时间序列分析.3、时间序列的预测方法.mp4

│      13、课程:时间序列分析.4、一阶平滑法.mp4

│      13、课程:时间序列分析.5、二次指数平滑法.mp4

│      13、课程:时间序列分析.6、Python代码展示.mp4

│      13、课程:时间序列分析.7、数据导入和平稳性检测.mp4

│      13、课程:时间序列分析.8、平稳性处理于模型构建.mp4

│      13、课程:时间序列分析.9、模型的其他构建法.mp4

│      14、课程:RNN.10、RNN损失函数.mp4

│      14、课程:RNN.11、RNN中的求导推理.mp4

│      14、课程:RNN.12、RNN的求导公式推导.mp4

│      14、课程:RNN.13、随时间产生的梯度消失问题.mp4

│      14、课程:RNN.14、梯度消失的反面—梯度爆炸.mp4

│      14、课程:RNN.1、时间序列数据的特点和历史(一).mp4

│      14、课程:RNN.2、时间序列数据的特点和历史(二).mp4

│      14、课程:RNN.3、RNN的网络结构(一).mp4

│      14、课程:RNN.4、RNN的网络结构(二).mp4

│      14、课程:RNN.5、RNN中的时间不变性.mp4

│      14、课程:RNN.6、RNN的代码实现.mp4

│      14、课程:RNN.7、RNN下的语言模型(一).mp4

│      14、课程:RNN.8、RNN下的语言模型(二).mp4

│      14、课程:RNN.9、RNN的前向传播.mp4

│      15、课程:RNN实战.1、自然语言的编码.mp4

│      15、课程:RNN实战.2、RNN代码展示—前向传递.mp4

│      15、课程:RNN实战.3、RNN代码展示—反向传播.mp4

│      15、课程:RNN实战.4、RNN中的梯度更新.mp4

│      15、课程:RNN实战.5、模型的训练.mp4

│      15、课程:RNN实战.6、PyTorch下的RNN之前向传播.mp4

│      15、课程:RNN实战.7、模型的构建代码.mp4

│      15、课程:RNN实战.8、模型的训练代码.mp4

│      15、课程:RNN实战.9、将模型改为生成模型.mp4

│      16、课程:RNN时间序列预测.1、数据准备和导入.mp4

│      16、课程:RNN时间序列预测.2、使用线性模型进行预测.mp4

│      16、课程:RNN时间序列预测.3、使用神经网络进行预测.mp4

│      16、课程:RNN时间序列预测.4、预测结果展示与分析.mp4

│      16、课程:RNN时间序列预测.5、从前馈网络到RNN.mp4

│      16、课程:RNN时间序列预测.6、应对梯度爆炸.mp4

│      16、课程:RNN时间序列预测.7、加速模型的训练方法(一).mp4

│      16、课程:RNN时间序列预测.8、加速模型的训练方法(二).mp4

│      17、课程:RNN深度理解.10、GRU的优势.mp4

│      17、课程:RNN深度理解.11、Attention机制.mp4

│      17、课程:RNN深度理解.1、RNN和动力学系统.mp4

│      17、课程:RNN深度理解.2、高维动力系统.mp4

│      17、课程:RNN深度理解.3、RNN的图灵完备性.mp4

│      17、课程:RNN深度理解.4、RNN与脑科学的联系.mp4

│      17、课程:RNN深度理解.5、如何解决梯度消失的问题.mp4

│      17、课程:RNN深度理解.6、LSTM的原理.mp4

│      17、课程:RNN深度理解.7、LSTM的优势.mp4

│      17、课程:RNN深度理解.8、LSTM的方程.mp4

│      17、课程:RNN深度理解.9、GRU原理.mp4

│      18、课程:课程总结.1、机器学习的问题.mp4

│      18、课程:课程总结.2、机器学习的核心概念.mp4

│      18、课程:课程总结.3、机器学习常见模型.mp4

│      18、课程:课程总结.4、CNN常见技巧.mp4

│      18、课程:课程总结.5、RNN和迁移学习.mp4

│     

└─资料

        CNN (1).pdf

        CNN网络进化.pdf

        CNN网络高进.pdf

        Neural Style Transfer.pdf

        PCA.pdf

        RNN.pdf

        SVM(新) 2.pdf

        代码.zip

        分类问题引入.pdf

        图像处理纵览.pdf

        机器学习引入 - 线性回归.pdf

        机器学习的数学理论2.pdf

        神经网络(new).pdf

        逻辑斯蒂回归.pdf

        集群模型2.pdf

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353