背景
在网络安全领域,许多僵尸网络为了维持与C&C的链接,并有效隐藏C&C服务器的域名,会使用DGA技术让僵尸主机持续解析大量的域名,并将有效C&C域名隐藏其中躲避黑白名单机制。衍生出的安全问题是:如何在大量的域名解析记录中识别出DGA域名。很多安全团队使用机器学习的方法,机器学习第一步需要将域名字符串解析为向量。
-白名单:alexa中排名前一百万的域名。
-黑名单:360netlab公布的DGA域名。
1.CountVectorizer()向量化
定义如下的一个CountVectorizer()
CV = CountVectorizer(ngram_range=(2, 4),
token_pattern=r'\w',
decode_error='ignore',
strip_accents='ascii',
stop_words='english',
max_df=1.0,
min_df=1)
x = load_alexa()
url = CV.fit_transform(x)
print(CV.vocabulary_)
print(len(CV.vocabulary_))
len = url.shape[0]
i = 0
while i < len:
print("the url is: {} , and the vector is: {}".format(x[i],url[i].toarray()))
i += 1
运行结果显示,在没有指定max_features属性,序列相关最小为2,最大为4的情况下,共有34972个单词。部分向量表示下:
the url is: google.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: youtube.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: facebook.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: baidu.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: wikipedia.org , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: yahoo.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: reddit.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.co.in , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: qq.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: twitter.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: taobao.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: amazon.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.co.jp , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: sohu.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: live.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: tmall.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: vk.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: instagram.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: sina.com.cn , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: 360.cn , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.de , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: jd.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.co.uk , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: linkedin.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: weibo.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.fr , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.ru , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: yandex.ru , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.com.br , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: yahoo.co.jp , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: netflix.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.com.hk , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: t.co , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: imgur.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: hao123.com , and the vector is: [[0 0 0 ... 0 0 0]]
the url is: google.it , and the vector is: [[0 0 0 ... 0 0 0]]
可以看到,在不进行max_feature属性指定时,维度非常大,已经无法正常显示,指定max_feature=30
LOAD ALEXA
sorted(inconsistent))
{'b o': 0, 'u c o': 28, 'o o g l': 26, 'g o': 10, 'o g l e': 21, 'g l e c': 9, 'o m': 22, 'g l e': 8, 'e c o m': 5, 'u c': 27, 'e c o': 4, 'e d': 6, 'g l': 7, 'o n': 23, 'o o': 24, 'o g l': 20, 'o o g': 25, 'o c o': 17, 'c o': 1, 'o g': 19, 'l e c': 14, 'c o m': 2, 'g o o g': 12, 'e c': 3, 'l e': 13, 'u c o m': 29, 'o c o m': 18, 'g o o': 11, 'l e c o': 15, 'o c': 16}
30
the url is: google.com , and the vector is: [[0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0]]
the url is: youtube.com , and the vector is: [[0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]]
the url is: facebook.com , and the vector is: [[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0]]
the url is: baidu.com , and the vector is: [[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1]]
the url is: wikipedia.org , and the vector is: [[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
the url is: yahoo.com , and the vector is: [[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0]]
the url is: reddit.com , and the vector is: [[0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]]
the url is: google.co.in , and the vector is: [[0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0]]
the url is: qq.com , and the vector is: [[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]]
the url is: twitter.com , and the vector is: [[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]]
the url is: taobao.com , and the vector is: [[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0]]
the url is: amazon.com , and the vector is: [[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0]]
the url is: google.co.jp , and the vector is: [[0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0]]
the url is: sohu.com , and the vector is: [[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1]]
2.TfidfVectorizer()向量化
定义如下的TfidfVectorizer()
TV = TfidfVectorizer(ngram_range=(2, 4),
token_pattern=r'\w',
decode_error='ignore',
strip_accents='ascii',
max_features=30,
stop_words='english',
max_df=1.0,
min_df=1)
读入相同的文件,结果如下:
LOAD ALEXA
D:\Program Files\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py:286: UserWarning: Your stop_words may be inconsistent with your preprocessing. Tokenizing the stop words generated tokens ['b', 'c', 'd', 'e', 'f', 'g', 'h', 'k', 'l', 'm', 'n', 'o', 'p', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y'] not in stop_words.
sorted(inconsistent))
{'g l': 7, 'e c': 3, 'o g l': 20, 'o m': 22, 'g o': 10, 'u c o m': 29, 'o c o m': 18, 'o n': 23, 'o g': 19, 'e c o m': 5, 'u c o': 28, 'o o': 24, 'o o g': 25, 'l e c o': 15, 'o c o': 17, 'l e c': 14, 'e d': 6, 'e c o': 4, 'o g l e': 21, 'c o': 1, 'g l e c': 9, 'o c': 16, 'l e': 13, 'g o o': 11, 'c o m': 2, 'u c': 27, 'b o': 0, 'g o o g': 12, 'o o g l': 26, 'g l e': 8}
30
the url is: google.com , and the vector is: [[0. 0.10749632 0.12299748 0.2110333 0.2110333 0.26240116
0. 0.23347228 0.23347228 0.23347228 0.23347228 0.23347228
0.23347228 0.23347228 0.23347228 0.23347228 0. 0.
0. 0.23347228 0.23347228 0.23347228 0.12299748 0.
0.19269932 0.23347228 0.23347228 0. 0. 0. ]]
the url is: youtube.com , and the vector is: [[0. 0.24052746 0.27521195 0.47219574 0.47219574 0.58713344
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.27521195 0.
0. 0. 0. 0. 0. 0. ]]
the url is: facebook.com , and the vector is: [[0.68254156 0.27961273 0.31993338 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.31993338 0.
0.50123747 0. 0. 0. 0. 0. ]]
the url is: baidu.com , and the vector is: [[0. 0.21569465 0.2467982 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.2467982 0.
0. 0. 0. 0.52651594 0.52651594 0.52651594]]
the url is: wikipedia.org , and the vector is: [[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.]]
the url is: yahoo.com , and the vector is: [[0. 0.20117971 0.23019019 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.49108463 0.49108463
0.49108463 0. 0. 0. 0.23019019 0.
0.36063741 0. 0. 0. 0. 0. ]]
the url is: reddit.com , and the vector is: [[0. 0.32313599 0.36973278 0. 0. 0.
0.78878291 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.36973278 0.
0. 0. 0. 0. 0. 0. ]]
the url is: google.co.in , and the vector is: [[0. 0.10916042 0. 0.21430022 0.21430022 0.
0. 0.23708657 0.23708657 0.23708657 0.23708657 0.23708657
0.23708657 0.23708657 0.23708657 0.23708657 0. 0.
0. 0.23708657 0.23708657 0.23708657 0. 0.26646328
0.19568241 0.23708657 0.23708657 0. 0. 0. ]]
the url is: qq.com , and the vector is: [[0. 0.52570485 0.60151243 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.60151243 0.
0. 0. 0. 0. 0. 0. ]]
the url is: twitter.com , and the vector is: [[0. 0.52570485 0.60151243 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.60151243 0.
0. 0. 0. 0. 0. 0. ]]
the url is: taobao.com , and the vector is: [[0.46588511 0.19085638 0.21837821 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.46588511 0.46588511
0.46588511 0. 0. 0. 0.21837821 0.
0. 0. 0. 0. 0. 0. ]]
the url is: amazon.com , and the vector is: [[0. 0.32313599 0.36973278 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.36973278 0.78878291
0. 0. 0. 0. 0. 0. ]]
the url is: google.co.jp , and the vector is: [[0. 0.11325515 0. 0.22233886 0.22233886 0.
0. 0.24597995 0.24597995 0.24597995 0.24597995 0.24597995
0.24597995 0.24597995 0.24597995 0.24597995 0. 0.
0. 0.24597995 0.24597995 0.24597995 0. 0.
0.20302268 0.24597995 0.24597995 0. 0. 0. ]]
the url is: sohu.com , and the vector is: [[0. 0.21569465 0.2467982 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.2467982 0.
0. 0. 0. 0.52651594 0.52651594 0.52651594]]