Having和Where的区别

“Where” 是一个约束声明,使用Where来约束来之数据库的数据,Where是在结果返回之前起作用的,且Where中不能使用聚合函数。

“Having”是一个过滤声明,是在查询返回结果集以后对查询结果进行的过滤操作,在Having中可以使用聚合函数。

聚合函数,SQL基本函数,聚合函数对一组值执行计算,并返回单个值。除了 COUNT 以外,聚合函数都会忽略空值。 聚合函数经常与 SELECT 语句的 GROUP BY 子句一起使用。

Transact-SQL编程语言提供下列聚合函数:
1.AVG 返回指定组中的平均值,空值被忽略。
例:select prd_no,avg(qty) from sales group by prd_no

  1. COUNT 返回指定组中项目的数量。
    例:select count(prd_no) from sales
  2. MAX 返回指定数据的最大值。
    例:select prd_no,max(qty) from sales group by prd_no
  3. MIN 返回指定数据的最小值。
    例:select prd_no,min(qty) from sales group by prd_no

在说区别之前,得先介绍GROUP BY这个子句,而在说GROUP子句前,又得先说说“聚合函数”——SQL语言中一种特殊的函数。例如SUM, COUNT, MAX, AVG等。这些函数和其它函数的根本区别就是它们一般作用在多条记录上。

如:
SELECT SUM(population) FROM vv_t_bbc ;

这里的SUM作用在所有返回记录的population字段上,结果就是该查询只返回一个结果,即所有国家的总人口数。

而通过使用GROUP BY 子句,可以让SUM 和 COUNT 这些函数对属于一组的数据起作用。当你指定 GROUP BY region 时,只有属于同一个region(地区)的一组数据才将返回一行值,也就是说,表中所有除region(地区)外的字段,只能通过 SUM, COUNT等聚合函数运算后返回一个值。

下面再说说“HAVING”和“WHERE”:
  HAVING子句可以让我们筛选成组后的各组数据,WHERE子句在聚合前先筛选记录.也就是说作用在GROUP BY 子句和HAVING子句前;而 HAVING子句在聚合后对组记录进行筛选。

让我们还是通过具体的实例来理解GROUP BY 和 HAVING 子句:

SQL实例:

一、显示每个地区的总人口数和总面积:

SELECT region, SUM(population), SUM(area)
FROM bbc
GROUP BY region

先以region把返回记录分成多个组,这就是GROUP BY的字面含义。分完组后,然后用聚合函数对每组中的不同字段(一或多条记录)作运算。

二、显示每个地区的总人口数和总面积.仅显示那些人口数量超过1000000的地区。

SELECT region, SUM(population), SUM(area)
FROM bbc
GROUP BY region
HAVING SUM(population)>1000000

[注]  在这里,我们不能用where来筛选超过1000000的地区,因为表中不存在这样一条记录。

相反,HAVING子句可以让我们筛选成组后的各组数据.

ps:如果想根据sum后的字段进行排序可以在后面加上:order by sum(population) desc/asc


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,110评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,443评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,474评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,881评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,902评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,698评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,418评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,332评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,796评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,968评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,110评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,792评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,455评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,003评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,130评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,348评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,047评论 2 355

推荐阅读更多精彩内容