2021-08-31-正则化

1.过拟合现象


图一中,使用一条直线进行数据的拟合,但是这个模型并没有很好的拟合数据,产生很大的偏差。这种现象称为欠拟合

图二中,使用一个二次函数进行拟合,得到很好的拟合结果。

图三中,使用更高阶的多项式进行拟合,这个模型通过了所有的训练数据,使代价函数  约等于0甚至等于0。但是这是一条极度不规律扭曲的曲线,它并不是一个好的模型。

过拟合现象:如果我们使用高阶多项式,变量(特征)过多,那么这个函数能够很好的拟合训练集,但是却会无法泛化到新的数据样本中(泛化:一个假设模型能够应用到新样本的能力)。

当存在较多的变量,较少的训练数据,使得没有足够的训练集来约束这个变量过多(维度)的模型,就会导致过拟合的现象。

1.     解决过拟合问题:

1)减少变量的个数:舍弃一些变量,保留更为重要的变量。但是,如果每个特征变量都对预测产生影响。当舍弃一部分变量时,也就舍弃了一些信息。所以,希望保留所有的变量。

2)正则化:保留所有的变量,将一些不重要的特征的权值置为0或权值变小使得特征的参数矩阵变得稀疏,使每一个变量都对预测产生一点影响。

加入正则项后,估计参数长度变短了,这在数学上被称为特征缩减(shrinkage)

shrinkage方法介绍:指训练求解参数过程中考虑到系数的大小,通过设置惩罚系数,使得影响较小的特征的系数衰减到0,只保留重要特征的从而减少模型复杂度进而达到规避过拟合的目的。常用的shinkage的方法有Lasso(L1正则化)和岭回归(L2正则化)等。

采用shrinkage方法的主要目的包括两个:一方面因为模型可能考虑到很多没必要的特征,这些特征对于模型来说就是噪声,shrinkage可以通过消除噪声从而减少模型复杂度;另一方面模型特征存在多重共线性(变量之间相互关联)的话可能导致模型多解,而多解模型的一个解往往不能反映模型的真实情况,shrinkage可以消除关联的特征提高模型稳定性。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容

  • 综述 机器学习中经常会在损失函数中加入正则项,称之为正则化Regularize。 目的:防止模型过拟合 原理:在损...
    TOMOCAT阅读 590评论 0 0
  • 在系列(八)中提到了机器学习最重要就是降低模型的方差,即解决过拟合的问题,其中最重要的一种方法就是模型正则...
    yyoung0510阅读 1,144评论 0 3
  • 一句话概括:正则化(Regularization)是机器学习中一种常用策略,目的是降低模型复杂度,减小过拟合,通过...
    yousa_阅读 771评论 0 0
  • 花书上关于网络优化的笔记记录于https://www.jianshu.com/p/06bb6d6a5227 花书上...
    单调不减阅读 1,427评论 0 0
  • 1、参数范数惩罚 正则化在深度学习的出现前就已经被使用了数十年。线性模型,如线性回归和逻辑回归可以使用简单、直接、...
    单调不减阅读 2,410评论 0 1