随机梯度下降算法

以线性回归为例:
预测函数为:
h_\theta(x) = \theta^Tx
代价函数:
J_{train}(\theta) = \frac{1}{2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2

重复:{
  \theta_j:=\theta_j−\alpha \left( \frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)} \right)
}

当数据量过大时,梯度下降的算法会变得很慢,因为要对所有的数据进行求和。因为每次重复梯度下降都是所有数据全部求和,所以梯度下降算法又称之为批量梯度下降(Batch Gradient Descent)

概念说明

随机梯度下降在每一次迭代中,不用考虑全部的样本,只需要考虑一个训练样本。

针对一个样本,它的代价函数:
cost(\theta, (x^{(i)},y^{(i)})) = \frac{1}{2}(h_\theta(x^{(i)})-y^{(i)})^2
而针对所有样本的代价函数可以看作是对每个样本代价函数的平均:
J_{train}(\theta) = \frac{1}{m}\sum_{i=1}^m cost(\theta, (x^{(i)},y^{(i)}))

随机梯度下降算法如下:
第一步,先随机打乱训练集样本。
第二步,进行梯度下降:
重复 {
  循环所有样本 for i=1,2,3,...,m {
    \theta_j:=\theta_j−\alpha (h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}
  }
}

一开始随机打乱数据是为了对样本集的访问是随机的,会让梯度下降的速度快一点。

该算法一次训练一个样本,对它的代价函数进行一小步梯度下降,修改参数\theta,使得它对该样本的拟合会好一点;然后再对下一个样本进行运算,直到扫描完所有的训练样本,最后外部在迭代这个过程。

跟批量梯度下降算法不同的是,随机梯度下降不需要等到所有样本求和来得到梯度项,而是在对每个样本就可以求出梯度项,在对每个样本扫描的过程中就已经在优化参数了。

在梯度下降过程中,批量梯度下降的过程趋向于一条直线,直接收敛到全局最小值;而随机梯度下降不太可能收敛到全局最小值,而是随机地在其周围震荡,但通常会很接近最小值。

随机梯度下降通常需要经过1-10次外部循环才能接近全局最小值。

判断收敛

在批量梯度下降中,要判断是否收敛,需要在每一次迭代算法后计算J_{train}的值,根据值的变化来判断收敛。
在执行随机梯度下降时,不需要计算所有的样本的代价函数,只用在对某个样本进行梯度下降前计算该样本的代价函数cost(\theta, (x^{(i)},y^{(i)})),为了判断是否收敛,可以计算多次迭代后cost(\theta, (x^{(i)},y^{(i)}))的平均值,例如1000次迭代,在每次更新\theta前,计算最后1000次的的cost的平均值。

选择每隔多少次计算成本函数对梯度下降的过程也有影响:

上图中蓝色曲线是每1000次迭代,红色的是每隔5000次迭代。
因为随机梯度下降时会出现震荡,当迭代次数少时发现下降的曲线起伏很多,而迭代次数变大时,曲线就会变得平滑许多。缺点是每隔5000个计算,会增加计算成本。

增加迭代次数可以判断算法是否正确:

上图蓝色的是1000个迭代次数,通过这条曲线,不能很好的判断成本函数是否在下降,这时就需要添加迭代次数,当增加到5000次,则可以通过平滑的曲线判断,当下滑曲线是红色的时,说明算法是有效的,代价函数值在下降;当是紫色的曲线时,可以看到是一个平坦的线,这时判断算法可能出现问题了。

在随机梯度下降中,学习率\alpha也会影响算法,当学习率减小时,下降曲线的震荡就会变小,而且会收敛到一个更好的解:


图中红色的曲线时学习率更小的一个,可以看到震荡变小,且下降到一个更小的值。

当看到曲线是上升的时候,可以尝试减小学习率看看效果。

在随机梯度下降中,如果想要收敛到全剧最小值,需要随着时间的变化减小学习率\alpha的值:
\alpha = \frac{const1}{iterNumber + const2}
学习率等于一个常数除以迭代次数加另一个常数,随着迭代次数增大,学习率会减小;但这会造成常数1和常数2的选择问题。

转载自:
https://codeeper.com/2020/02/08/tech/machine_learning/stochastic_gradient_descent.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容