Kafka学习(一)安装

简介

Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。

Kafka 是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

  • 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
  • 高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
  • 支持通过Kafka服务器和消费机集群来分区消息。
  • 支持Hadoop并行数据加载。

准备

wget http://mirrors.hust.edu.cn/apache/kafka/1.1.0/kafka_2.12-1.1.0.tgz
tar -zvxf kafka_2.12-1.1.0.tgz
  • 配置/etc/hosts文件
192.168.1.211        master
192.168.1.212        slave1
192.168.1.213        slave2

修改配置

进入Kafka的config目录,修改server.properties

  • 修改broker.id
    每个节点不一样

-打开监听端口
listeners=PLAINTEXT://hostname:9092(部署所在机器的hostname)

-修改log的目录
在Kafka的主目录下,创建logs文件夹mkdir logs
修改log目录
log.dirs=/home/kafka_2.12-1.1.0/logs

-配置Zookeeper连接信息
zookeeper.connect=192.168.1.201:2181,192.168.1.202:2181,192.168.1.203:2181

启动

bin/kafka-server-start.sh config/server.properties &

Kafka常用命令

  • 创建一个主题topic
    bin/kafka-topics.sh --create --zookeeper 192.168.1.201:2181,192.168.1.202:2181,192.168.1.203:2181 --replication-factor 3 --partitions 3 --topic HelloWorld
--zookeeper : zookeeper集群列表,用英文逗号分隔。可以不用指定zookeeper整个集群内的节点列表,只指定某个或某几个zookeeper节点列表也是可以的
--replication-factor : 复制数目,提供failover机制;1代表只在一个broker上有数据记录,一般值都大于1,代表一份数据会自动同步到其他的多个broker,防止某个broker宕机后数据丢失。
--partitions : 一个topic可以被切分成多个partitions。通过将topic的消息打散到多个分区并分布保存在不同的broker上实现了消息处理(不管是producer还是consumer)的高吞吐量。
  • 查询主题列表
    bin/kafka-topics.sh --list --zookeeper 192.168.1.201:2181,192.168.1.202:2181,192.168.1.203:2181

-主题描述
bin/kafka-topics.sh --describe --zookeeper 192.168.1.201:2181,192.168.1.202:2181,192.168.1.203:2181 --topic HelloWorld

-发布消息到指定的主题
bin/kafka-console-producer.sh --broker-list master:9092,slave1:9092,slave2:9092 --topic HelloWorld

-消费指定的主题的消息
bin/kafka-console-consumer.sh --bootstrap-server master:9092,slave1:9092,slave2:9092 --from-beginning --topic HelloWorld

组内分区分配

consumer group下有两个consumer: A和B,当第三个成员加入时,kafka会触发rebalance并根据默认的分配策略重新为A、B和C分配分区,如下图所示:

topicA-0 表示主题A的一个标识为“0”的切片

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,252评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,886评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,814评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,869评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,888评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,475评论 1 312
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,010评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,924评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,469评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,552评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,680评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,362评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,037评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,519评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,621评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,099评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,691评论 2 361

推荐阅读更多精彩内容

  • ** 今天看了一下kafka官网,尝试着在自己电脑上安装和配置,然后学一下官方document。** Introd...
    RainChang阅读 5,010评论 1 30
  • 一、入门1、简介Kafka is a distributed,partitioned,replicated com...
    HxLiang阅读 3,352评论 0 9
  • 在hyperledger fabric的orderer中,目前发布的版本是使用kafka来做排序,并没有用到所谓的...
    y9g阅读 6,619评论 0 3
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,711评论 18 139
  • 1、常见排序算法大致有以下几种:冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序2、各种排序算法...
    无边小猪阅读 152评论 0 1