R语言绘制频率直方图

频率直方图是数据统计中经常会用到的图形展示方式,同时在生物学分析中可以更好的展示表型性状的数据分布类型;R基础做图中的hist函数对单一数据的展示很方便,但是当遇到多组数据的时候就不如ggplot2绘制来的方便。


1.基础做图hist函数

hist(rnorm(200),col='blue',border='yellow',main='',xlab='')

1.1 多图展示

par(mfrow=c(2,3))
for (i in 1:6) {hist(rnorm(200),border='yellow',col='blue',main='',xlab='')}

2.ggplot2绘制

  • 构造一组正态分布的数据
PH<-data.frame(rnorm(300,75,5))
names(PH)<-c('PH')
#显示数据
head(PH)

##         PH
## 1 72.64837
## 2 67.10888
## 3 89.34927
## 4 75.70969
## 6 82.85354

  • 加载ggplot2作图包并绘图
library(ggplot2)
library(gridExtra)
p1<-ggplot(data=PH,aes(PH))+
geom_histogram(color='white',fill='gray60')+ #控制颜色
ylab(label = 'total number') #修改Y轴标签

2.1 修改柱子之间的距离

p2<-ggplot(data=PH,aes(PH))+
geom_histogram(color='white',fill='gray60',binwidth = 3)

2.2 添加拟合曲线

p3<-ggplot(data=PH,aes(PH,..density..))+
geom_histogram(color='white',fill='gray60',binwidth = 3)+
geom_line(stat='density')

2.3 修改线条的粗细

p4<-ggplot(data=PH,aes(PH,..density..))+
geom_histogram(color='white',fill='gray60',binwidth = 3)+
geom_line(stat='density',size=1.5)
grid.arrange(p1,p2,p3,p4)

2.4 绘制密度曲线

p1<-ggplot(data=PH,aes(PH,..density..))+
geom_density(size=1.5)

2.5 修改线条样式

p2<-ggplot(data=PH,aes(PH,..density..))+
geom_density(size=1.5,linetype=2)
p3<-ggplot(data=PH,aes(PH,..density..))+
geom_density(size=1.5,linetype=5)

2.6 修改颜色

p4<-ggplot(data=PH,aes(PH,..density..))+
geom_density(size=1.5,linetype=2,colour='red')
grid.arrange(p1,p2,p3,p4)

2.7 多组数据展示

  • 构造两组数据
df<-data.frame(c(rnorm(200,5000,200),rnorm(200,5000,600)),rep(c('BJ','TJ'),each=200))    
names(df)<-c('salary','city')
  • 结果展示
library(ggplot2)
p1<-ggplot()+
geom_histogram(data=df,aes(salary,..density..,fill=city),color='white')
p2<-ggplot()+
geom_histogram(data=df,aes(salary,..density..,fill=city),color='white',alpha=.5)
p3<-ggplot()+
geom_density(data=df,aes(salary,..density..,color=city))
p4<-ggplot()+
geom_histogram(data=df,aes(salary,..density..,fill=city),color='white')+geom_density(data=df,aes(salary,..density..,color=city))
grid.arrange(p1,p2,p3,p4)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容

  • 图形初步 在本章中,我们将讨论处理图形的一般方法。我们首先探讨如何创建和保存图形,然后关注如何修改那些存在于所有图...
    jplee阅读 5,015评论 0 12
  • 首先我是这是我日常逛 twitter 看到的,然后我又是一个搬运工, 放最前面的 链接来源 :twitter 链接...
    热衷组培的二货潜阅读 4,084评论 1 24
  • 搬到新家已经一周了,过完了忙碌的四月,今日才得闲早早洗了享受这难得的休闲时光。 我从来就是个念旧的人,老妈说...
    LS玖阅读 242评论 0 4
  • 三个月, 是我变老了吗, 看到校园里的学生, 怎么感觉就那么青涩。 走进阔别已久的寝室楼, 一想, 现在已没有我的...
    三三7阅读 261评论 0 0
  • 姓名:吴艺琳 公司:无锡宏广电容器有限公司 组别:第519期六项精进利他一组组员 【日精进打卡第12天】 【知—学...
    1530b0c2e3a1阅读 36评论 0 0