降噪自动编码器(Denoising AutoEncoder)+BERT

背景:随着科技发展。出现处理更多的高维数据,比如图像、语音。1)传统的统计学-机器学习方法:由于数据维度过高,数据单调,噪声分布广,传统的特征工程很难奏效。2)降维方法,如线性学习的PCA降维方法。但很难解决非线性问题。3)CNN:利用卷积、降采样两大手段从信号数据的特点上很好的提取出了特征。但无法处理一般的非信号数据。

自动编码器 :自动编码器基于这样一个事实:原始input 经过编码再解码后,得到x~,loss取x与x~的最大似然。自动编码器本身的设计,是为了得到中间的编码(提取的特征)。如果f和g是恒等映射,则毫无意义。因此,常常需要对y做一些约束。

其中的encoder 和decoder可以通过神经网络进行学习,神经网络的每一层都可以对信息进行非线性的变换。为了学习到有意义的特征,通常会给隐层加约束。1)隐藏维度< 输入数据维度,则网络试图以更小的维度去描述原始数据,而确保信息不丢失。类似PCA。

Auto-Encoder

降噪自动编码器:一个模型,能够从有噪音的原始数据作为输入,而能够恢复出真正的原始数据。这样的模型,是更鲁棒

BERT:BERT是一种基于Transformer Encoder来构建的一种模型,它整个的架构其实是基于DAE(Denoising Autoencoder,去噪自编码器)的,这部分在BERT文章里叫作Masked Lanauge Model(MLM)。MLM并不是严格意义上的语言模型,因为整个训练过程并不是利用语言模型方式来训练的。BERT随机把一些单词通过MASK标签来代替,并接着去预测被MASK的这个单词,过程其实就是DAE的过程。BERT有两种主要训练好的模型,分别是BERT-Small和BERT-Large, 其中BERT-Large使用了12层的Encoder结构。 整个的模型具有非常多的参数。

那么BERT/ALBERT采取了哪些噪声引入方式呢?

选取15%的token做mask --> 最常规做法,也是MLM的基础;

随机做n-gram mask --> 概率上增加连续mask的数量。连续mask可以让cloze test更难;

50%概率交换两个文本段 --> 虽然这是为了NSP/SOP任务组数据,但这种方式客观上也引入了文本段层面的语义乱序——毕竟做MLM的时候模型不知道两文本段次序是否被换过;

15%的[MASK]中,80%->[MASK]/10%->origin/10%->random_token --> 论文已提,为了减少mismatch,这个严格而言不算引入噪声;

15%的token会进行文本乱序 --> 文本乱序,自然是引入噪声,但由于MLM任务只会对[MASK] token做预测,所以文本乱序可以说是间接引入噪声;


链接:https://blog.csdn.net/weixin_41712499/article/details/107034864

https://kexue.fm/archives/7038/comment-page-1

https://www.zhihu.com/question/41490383

https://zhuanlan.zhihu.com/p/108031414

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容