了解 Intra-class Correlation Correlation 组内相关系数

什么是intra-class coefficient correlation?翻译过来是组内相关系数。

为什么会需要它呢?

当我们的调查中有许多不同的采访者、评分者或评估者时,通常使用类内相关系数(ICC)。假设我们的调查中有n个参与者(或项目),每个参与者由k个不同的面试官进行评估。我们感兴趣的是知道我们看到的k个面试官之间的一致程度(面试官是否为每个参与者记录了相同的结果)。ICC是我们的数据中总方差的比例,它由采访者之间的方差解释。在大多数情况下,ICC的值在0到1之间,当ICC接近1时,我们看到审查员之间有一个完美的一致,当ICC接近0时,我们看到审查员之间没有一致。

我觉得下边的这个例子解释的比较清楚。


Intraclass correlation measures the reliability of ratings or measurements for clusters — data that has been collected as groups or sorted into groups. A related term is interclass correlation, which is usually another name for Pearson correlation (other statistics can be used, like Cohen’s kappa, but this is rare). Pearson’s is usually used for inter-rater reliability when you only have one or two meaningful pairs from one or two raters. For more, you’ll want to use the ICC. Like most correlation coefficients, the ICC ranges from 0 to 1.

  • A high Intraclass Correlation Coefficient (ICC) close to 1 indicates high similarity between values from the same group.

  • A low ICC close to zero means that values from the same group are *not *similar.

This is best illustrated with an example. In the image below, values from the same group are clustered fairly tightly together. For example, group 3 (on the x-axis) is clustered between about -1.3 and -0.4 on the y-axis. Most of the groups are similarly clustered, giving the entire set a high ICC of 0.91:

A dotplot of a dataset with high intraclass correlation. Image: skbkekas|Wikimedia Commons.

Compare that set to the following graph of a dataset with an extremely low ICC of 0.07. The values within groups are widely scattered without any clusters:

Dataset with a low ICC. Image: Skbkekas|Wikimedia Commons.

Common Uses and Calculation

The ICC is used to measure a wide variety of numerical data from clusters or groups, including:

  • How closely relatives resemble each other with regard to a certain characteristic or traits.

  • Reproducibility of numerical measurements made by different people measuring the same thing.

Calculating the ICC is very complex by hand, in part because of the number of ICC formulas to choose from, and partly because the formulas themselves are complex. The main reason for all of this complexity is that the ICC is very flexible and can be adjusted for inconsistent raters for all ratees. For example, let’s say you have a group of 10 raters who rate 20 ratees. If 9 of the raters rate 15 of the ratees and 1 rater rates all of them, or if 10 raters rate 2 each, you can still calculate the ICC.

Calculating the ICC is usually performed with software, and each program has its own terminology and quirks. For example, in SPSS, you’re given three different options for calculating the ICC.

  • If you have inconsistent raters/ratees, use “One-Way Random.”

  • If you have consistent raters/ratees (e.g. 10 raters each rate 10 ratees), and you have sample data. use “Two-Way Random.”

  • If you have consistent raters/ratees (e.g. 10 raters each rate 10 ratees), and you have population data, use “Two-Way Random.”


参考链接:

https://www.statisticshowto.datasciencecentral.com/intraclass-correlation/

http://www.adasis-events.com/statistics-blog/2013/4/25/what-is-the-intra-class-correlation-coefficient.html

https://www.uvm.edu/~dhowell/StatPages/

20190323

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,312评论 0 10
  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,437评论 0 23
  • 上学的时候,同专业有个姑娘很招男孩子喜欢,我想我们很多人都喜欢她吧,漂亮、得体、一切都恰到好处。当然她各方面条件也...
    96b241183f0b阅读 215评论 0 2
  • 昨天刚看完大冰的《阿弥陀佛,么么哒》延续《乖,摸摸头》的基调,大冰继续以他的小屋,他的浪荡不羁爱自由的生涯,告他...
    幻美心阅读 323评论 0 0
  • 姓名:李丹丹 公司:山东万洁环保科技有限公司 组别:第373期 利他一组 【日精进打卡第310天】 【知~学习】 ...
    小雨淅淅373阅读 100评论 0 0