CF414B Mashmokh and ACM
题目描述
Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.
A sequence of ll integers is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all .
Given and find the number of good sequences of length . As the answer can be rather large print it modulo .
输入格式
The first line of input contains two space-separated integers .
输出格式
Output a single integer — the number of good sequences of length modulo .
题意翻译
如果一个数列中,后一个数都能被前面一个数整除,那么就叫这个数列为好数列。输入n,k,求数列中最大元素为n,数列长度为k的好数列的种数(对1000000007取模)
由 @ROBOT233 提供翻译
输入输出样例
输入: 3 2
输出:5
输入: 6 4
输出:39
输入: 2 1
输出:2
说明/提示
In the first sample the good sequences are:
[1,1],[2,2],[3,3],[1,2],[1,3][1,1],[2,2],[3,3],[1,2],[1,3]
基本思路
使用动态规划,定义dp[k][i]
表示1~i
的序列中,以i
结尾并且长度为k
的好数列的种数,那么dp[k][i]
与以j
结尾(j<=i)且长度为k-1
的好数列种数有关,即dp[k-1][i]
,好数列的条件既要求i%j==0
.
for (int j = i; j > 0; --j)
if (i % j == 0) dp[k][i] = (dp[k][i] + dp[k - 1][j]) % MOD;
//超时TLE
#include<iostream>
#define MOD 1000000007
#define ll long long
using namespace std;
ll dp[2001][2001];
int main() {
int n, k;
cin >> n >> k;
for (int i = 1; i <= n; ++i) dp[1][i] = 1;
ll ans = 0;
for (int t = 2; t <= k; ++t)
for (int i = 1; i <= n; ++i)
for (int j = i; j > 0; --j)
if (i % j == 0)
dp[t][i] = (dp[t][i] + dp[t - 1][j]) % MOD;
for (int i = 1; i <= n; ++i) ans = (ans + dp[k][i]) % MOD;
for (int t = 1; t <= k; ++t) {
cout << t << ": ";
for (int i = 1; i <= n; ++i)
cout << dp[t][i] << ' ';
cout << '\n';
}
cout << ans << '\n';
}
python3版本,超时
def solve():
MOD = 1000000007
n, k = list(map(int, input().strip().split(' ')))
dp = [[0] * (n + 1) for _ in range(k + 1)]
for i in range(1, n + 1):
dp[1][i] = 1
for t in range(2, k + 1):
for i in range(1, n + 1):
for j in range(i, 0, -1):
if i % j == 0:
dp[t][i] = (dp[t][i] + dp[t - 1][j]) % MOD
ans = sum(dp[k]) % MOD
print(ans)
for row in dp:
print(row)
if __name__ == '__main__':
solve()
可以发现,因为当前数应是前一个数的倍数,因为 j 循环可以使用倍数 来减少循环。
#include<iostream>
#define MOD 1000000007
#define ll long long
using namespace std;
ll dp[2001][2001];
int main() {
int n, k;
cin >> n >> k;
for (int i = 1; i <= n; ++i) dp[1][i] = 1;
ll ans = 0;
for (int t = 2; t <= k; ++t)
for (int j = 1; j <= n; ++j)
for (int i = 1; i * j <= n; ++i)
dp[t][i * j] = (dp[t][i * j] + dp[t - 1][j]) % MOD;
for (int i = 1; i <= n; ++i) ans = (ans + dp[k][i]) % MOD;
for (int t = 1; t <= k; ++t) {
cout << t << ": ";
for (int i = 1; i <= n; ++i)
cout << dp[t][i] << ' ';
cout << '\n';
}
cout << ans << '\n';
}
#遗憾的是,python3版本仍然超时
def solve():
MOD = 1000000007
n, k = list(map(int, input().strip().split(' ')))
dp = [[0] * (n + 1) for _ in range(k + 1)]
for i in range(1, n + 1):
dp[1][i] = 1
for t in range(2, k + 1):
for j in range(1, n + 1):
for i in [i * j for i in range(1, n + 1) if i * j <= n]:
dp[t][i] = (dp[t][i] + dp[t - 1][j]) % MOD
ans = sum(dp[k]) % MOD
print(ans)
for row in dp:
print(row)
if __name__ == '__main__':
solve()
测试
输入:6 4
输出:
1: 1 1 1 1 1 1
2: 1 2 2 3 2 4
3: 1 3 3 6 3 9
4: 1 4 4 10 4 16
39
节约内存
由于动态规划过程中,只利用了二维矩阵某一行上的信息,即长度为的好数列仅仅与长度为的好数列有关,尝试将二维矩阵压缩成一维。
#include<iostream>
#define MOD 1000000007
#define ll long long
using namespace std;
ll dp[2001] = {0};
ll pre[2001] = {0};
int main() {
int n, k;
cin >> n >> k;
for (int i = 1; i <= n; ++i) pre[i] = 1;
ll ans = 0;
for (int t = 2; t <= k; ++t) {
for (int j = 1; j <= n; ++j) {
for (int i = 1; i * j <= n; ++i) {
dp[i * j] = (dp[i * j] + pre[j]) % MOD;
}
}
for (int j = 1; j <= n; ++j) {
pre[j] = dp[j];
dp[j] = 0;
}
}
for (int i = 1; i <= n; ++i) ans = (ans + pre[i]) % MOD;
for (int i = 1; i <= n; ++i)
cout << pre[i] << ' ';
cout << '\n';
cout << ans << '\n';
}
还可以进一步减少内存
#include<iostream>
#define MOD 1000000007
#define ll long long
using namespace std;
ll dp[2001] = {0};
int main() {
int n, k;
cin >> n >> k;
for (int i = 1; i <= n; ++i) dp[i] = 1;
ll ans = 0;
for (int t = 2; t <= k; ++t)
for (int j = n; j > 0; --j)
for (int i = 2; i*j <= n; ++i)
dp[i * j] = (dp[i * j] + dp[j]) % MOD;
for (int i = 1; i <= n; ++i) ans = (ans + dp[i]) % MOD;
for (int i = 1; i <= n; ++i)
cout << dp[i] << ' ';
cout << '\n';
cout << ans << '\n';
}