TensorFlow从0到1 - 8 - 万能函数的形态:人工神经网络

TensorFlow从0到1系列回顾

之前花了不小的篇幅来解释线性回归,尽管线性模型本身十分简单,但是确定模型参数的过程,却是一种数据驱动的、自学习的通用方式。准确的说,这个过程,是基于数据的、运用梯度下降算法来优化模型(减小损失)的算法框架。无论模型变得多复杂(多维、高阶),理论上我们都可以利用这个算法过程拟合模型。

似乎当有了数据就有了一切,但是这其中隐藏着一个假设:要事先知道模型的函数形式。

在复杂的现实问题面前,这个假设注定是毫无用处的。如果要对手写体数字进行分类,那么这个模型是几元的?几次的?包含多少项?不知道。这个时候,仅有大量的样本数据还不够,我们还需要一种“万能函数”的表达方式。

为了得到“万能函数”,人们转向模仿人类的大脑。大脑中并没有事先存储好的、用于分类各类事物的函数模型,而是1千亿(1011)个神经元。大量的、具有单一功能的单元的聚合,能够产生极其复杂的功能。神经元之于人脑,晶体管之于CPU,莫不如是。

神经网络

神经元

神经科学的研究成果一步步的揭开了神经元工作机制秘密。第一个提出神经元工作机制的赫布,在他1949年出版的《行为的组织》一书中写道:

“当A细胞的轴突和B细胞足够近,并且重复或不断地对其放电时,A、B中的一个细胞或者两个细胞都会经历生长过程或者代谢改变,这样A细胞的效率就会得到提高”。

这段话经常被转述成“一起放电的神经元也会被串联在一起”。通过相互激发而连接的神经元集群,可以编码各种概念和记忆。

感知器神经元

1943年,Warren McCulloch和Walter Pitts设计了第一个人工神经元模型。到了50年代,Frank Rosenblat基于麦卡洛克-皮茨神经元,发明了广为人知的感知器(Perceptron)神经元。此时,把感知器神经元组合在一起而形成的人工神经网络,不仅可以模拟通用的数字电路,而更使其与前者不同的是:人工神经网络能自动学习。通过学习算法,神经网络中的每个神经元可以根据外部刺激而调整自身(权值和偏置),从而形成新的功能。

人工神经元模仿大脑神经元细胞,有多个树突(dendrite)接受多路输入,一个轴突(axon)作为输出。因为神经元的输出是其他神经元的输入,所以神经元的输入和输出共享一个取值范围。感知器人工神经元如下图所示:

感知器
感知器输出

感知器的特征:

  • 神经元细胞左侧是很多个“树突”,可以接受n个输入x1, x2, ... xn,每个输入的取值范围是0或1;
  • 每个输入,都对应一个不同的权值w;
  • 神经元细胞右侧的1个“轴突”,是神经元的输出;
  • 如果输入的加权和小于阈值,则输出0;如果加权和大于阈值,则输出1。

对于输出稍作精简,引入偏置b = -threshold,并用向量点积代替加权和的形式:

感知器输出

S型神经元

一个更加通用的神经元模型如下图所示,这里引入了激活函数σ。也就是说,输出是加权输入z=w·x+b的函数σ(z)。

对比一下之前讨论的线性模型y=ax+b,你会发现,一个神经元就已经比线性模型复杂很多了:

  • 线性模型只有一个输入,对应一个权值w,而神经元是多个;
  • 线性模型没有激活函数。
通用神经元模型

一个重要的激活函数形式是sigmoid,《终极算法》甚至把它形容为世界上最重要的曲线。以sigmoid函数作为激活函数的神经元,就是目前应用最广泛的一种人工神经元——S型神经元

sigmoid函数定义如下:

sigmoid函数

sigmoid函数图如下:

sigmoid函数

sigmoid函数的输出范围是[0, 1]区间中的任意数。而这也是S型神经元的特性,相较于感知器神经元,它的输入和输出不再只是0和1二进制数了,而是[0, 1]一个连续变化区间中任意值。这解决了感知器神经元的一个重大的缺陷:在加权输入z=w·x+b接近0的情况下,一个很小的变化z就会导致输出的反转。

与S型感知器不同,感知器的激活函数是一个阶跃函数,这里给出函数图形以作比较:

step函数

万能函数的形态:人工神经网络

模仿人脑神经元的连接方式,将大量S型人工神经元堆叠成具有特定结构的网络,或许离我们想要的“万能函数”就不远了。下图是一个经典的3层神经网络结构,也被称为多层感知器MLP(Multilayer Perceptron)。明明是S型神经元构成的网络,却被称为多层感知器?的确如此。这里只需要知道这是由于历史原因造成的就可以了。

人工神经网络架构

其中第一层是输入层,提供整个网络的数据输入。输入层的每个神经元没有输入,仅仅提供1个输出。第二层称为隐藏层。第三层称为输出层。这种每个神经元都连接了上一层所有神经元输出的连接方式,称为全连接,以此方式连接的神经网络称为全连接神经网络

神经元之间的连接,是将1个神经元的输出连接到下一个神经元的输入上,虽然图中显示神经元的输出连接到后一层的每个神经元的输入,但是要注意这些是同一个输出,而不是有多个输出

从输入、输出的角度再来观察神经网络,会发现其本身也是一种函数,输入为x,输出为f(x),尽管函数具体形式无法直接描述,但是直觉上它应该可以表达极其复杂的形式。因为它是由大量的、每个都要比线性函数复杂的多的神经元组成的。

神经网络就是我们要找的“万能函数”的形态。1989年,George Cybenko证明了神经网络的普遍性定理:无论函数的形式f(x)有多复杂,总存在⼀个神经⽹络,对于任何可能的输⼊x,能够输出f(x)或其足够精度的近似值。对此,推荐阅读Michael Nielsen的《Neural Networks and Deep Learning》中做的一个可视化的、归纳式的证明

尽管又引入了一堆问题——隐藏层数的确定,隐藏层神经元个数的确定,激活函数的选择等等,但是我们获得了一种“万能函数”的表达方式。至此,终于可以说,只要有了足够多的样本数据,基于神经网络,就能自动的、智能的训练出所需的模型。

上一篇 7 TF线性回归的参数溢出之谜
下一篇 9 “驱魔”之反传大法


共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容