结构体内存对齐

结构体内存对齐

一、结构体对齐的三大原则

1、数据成员对齐规则:结构(struct)(或联合体(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员存储的起始位置要从该成员大小或者成员的子成员大小(只要该成员有子成员,比如说是数组、结构体等)的整数倍开始(比如int为4字节,则要从4的整数倍地址开始存储)

2、结构体作为成员:如果一个结构体里有某些结构体成员,则结构体成员要从其内部最大元素大小的整数倍地址开始存储(struct a里存有struct b,b里面有char、int 、double等元素,那b应该从8的整数倍开始存储)

3、收尾工作:结构体的总大小,也就是sizeof的结果,必须是其内部最大成员的整数倍,不足的要补齐。

首先,我们看一下各个数据类型在不同操作系统中所占的位数

二、内存对齐规则的应用

图中输出结果是24,为什么是24呢?

a 为double类型,占8个字节,又因为是第一个成员,起始值对应offset为0的位置。又因为占8个字节,所以a对应的是偏移量为8的地址空间

b 为char类型,占1个字节,对齐到1的整数倍,也就是下一个地址空间。

c 为int类型,占4个字节,对齐到4的整数倍,对齐数为12,偏移量为4的地址空间

d 为short类型,占2个字节,对齐到2的整数倍,对齐数为16,偏移量为2的地址空间

结构体的总大小,必须是其内部最大成员的整数倍,不足的要补齐,struct1中最大的成员为double类型,那么结构体的总大小即为8的整数倍,目前已经占了17字节,所以总大小应为24个字节

我们再看一下下面的输出又是多少呢?

输出结果是16。

如图a不变

b 为int类型,占4个字节,对齐到4的整数倍,对齐数为8,偏移量为4的地址空间

c 为char类型,占1个字节,对齐到1的整数倍,也就是下一个地址空间。

d 为short类型,占2个字节,对齐到2的整数倍,对齐数为14,偏移量为2的地址空间

又因为内存对齐原则,所以结构体的总大小为16个字节

那么结构体是否可以嵌套使用呢,嵌套使用的话,内存又该如何计算呢?

这里的输出结果是多少呢。我们来计算一下

如图a不变

b 为int类型,占4个字节,对齐到4的整数倍,对齐数为8,偏移量为4的地址空间

c 为char类型,占1个字节,对齐到1的整数倍,也就是下一个地址空间。

d 为short类型,占2个字节,对齐到2的整数倍,对齐数为14,偏移量为2的地址空间

e 为int类型,占4个字节,对齐到4的整数倍,对齐数为16,偏移量为4的地址空间

已知struct1占24个字节,double 占8个字节,不知道为什么的请往上看。

结构体作为成员:如果一个结构体里有某些结构体成员,则结构体成员要从其内部最大元素大小的整数倍地址开始存储(struct a里存有struct b,b里面有char、int 、double等元素,那b应该从8的整数倍开始存储)

所以struct1 应该从8的整数倍开始存储

那么struct1 占24个字节,对齐到8的整数倍,对齐数为24,偏移量为24的地址空间

所以结构体的总大小为48个字节

三、为什么要内存对齐呢?

(一)性能上的提升

从内存占用的角度讲,对齐后比未对齐有些情况反而增加了内存分配的开支,是为了什么呢?

数据结构(尤其是栈)应该尽可能地在自然边界上对齐,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。最重要的是提高内存系统的性能。

(二)跨平台

有些硬件平台并不能访问任意地址上的任意数据的,只能处理特定类型的数据,否则会导致硬件层级的错误。

有些CPU(如基于 Alpha,IA-64,MIPS,和 SuperH 体系的)拒绝读取未对齐数据。当一个程序要求这些 CPU 读取未对齐数据时,这时 CPU 会进入异常处理状态并且通知程序不能继续执行。

举个例子,在 ARM,MIPS,和 SH 硬件平台上,当操作系统被要求存取一个未对齐数据时会默认给应用程序抛出硬件异常。所以,如果编译器不进行内存对齐,那在很多平台的上的开发将难以进行。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351