分布式服务的幂等性设计,值得学习!

编程中的“幂等性”是指任意多次执行所产生的影响,与一次执行的影响相同。一个拥有幂等性设计的接口,保证无论一次或多次来调用接口,都能够得到相同的结果。接口的幂等性设计在某些场景下是必需的,例如用户下单的场景。

我们知道,服务之间的调用存在三种状态:成功、失败、超时。超时是一种未知的状态:被调服务是否执行成功,这个状态是未知的。上游服务调用下游服务超时时可能会进行重试。对于用户下单的场景的超时重试我们考虑以下问题:

是否会导致最终创建了两条一样的订单?

是否会扣除两遍库存?

是否会重复扣除用户的钱?

1
2
3
4
5

如果每一笔订单都携带唯一的序号,下单接口可以借助这个序号,来记录某次下单操作的状态。当下单的状态为成功时,就将重复的执行拦截住,避免出现上述的问题。这种方式是由下游被调方来保证幂等性。

除此之外,订单服务也可以提供查询订单状态的接口,上游在下单之前先进行查询,确认该笔订单并没有成功支付后,再重复进行下单操作。

一般来说,服务本身需要自己保证幂等性,而不应该将幂等性交给上游的调用方来做。
唯一ID

就上面的幂等性下单接口来说,要做到幂等性,就需要借助一个唯一的ID来标志每次交易。唯一ID的分配可以有几种方式:

由一个统一的ID分配中心来分配。

由上游服务来生成唯一ID,但必须保证不产生冲突的ID。

1
2
3

采用统一的分配中心来分配唯一ID时,业务方每次调用接口都多了一次调用分配中心获取唯一ID的请求。这多了额外的开销。

获取唯一ID有一种方式,是借助mysql的自增索引,这其实也是一个ID分配中心。对服务性能有苛刻要求时,可以采用第二种方式,由主调服务本身来生成这个唯一ID。关注公众号Java技术栈可以获取MySQL系列教程。

为了保持不会产生重复的ID,可以使用一下几种ID生成方法:

UUID

UUID的全称是Universally Unique Identifier,通用唯一识别码。

具体可以看维基百科的介绍:https://en.wikipedia.org/wiki/Universally_unique_identifier

UUID是一个128bit的数字,用于标志计算机的信息,虽然UUID不能保证绝对不重复,但重复的概率小到可以被忽略。UUID的生成没有什么规律,为了保证UUID的唯一性,规范定义了包括网卡MAC地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素,以及从这些元素生成UUID的算法。这也就意味着:

128bit,占据了太多的内存空间

生成的ID不是人可以看懂的

无法保证ID的递增,某些场景需要按前后排序 无法满足。

1
2
3
4
5

这是一个在线生成UUID的网站:https://www.uuidgenerator.net/ 你可以直观感受一下UUID。

Snowflake

这是Twitter的一个开源项目,它是一个分布式ID的生成算法,它会产生一个long类型的唯一ID,其核心算法是:

时间部分:41bit作为毫秒数,大概可以使用69.7年

机器编号部分:10bit作为机器编号,支持1024个机器实例。

毫秒内的序列号:12bit,一毫米可以生成4096个序列号

1
2
3
4
5

网上有各种语言实现的Snowflake算法的实现,有兴趣的阅读一下实现代码。

实际上,redis 或是 mongoDB 的全局ID生成器的算法和Snowflake算法大同小异。这是基于redis的分布式ID生成器实现:https://github.com/hengyunabc/redis-id-generator

它的核心思想是:

使用41 bit来存放时间,精确到毫秒,可以使用41年。

使用12 bit来存放逻辑分片ID,最大分片ID是4095

使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID

1
2
3
4
5

共享存储

如果我们的幂等性服务是分布式的,那么存储唯一ID也需要采用共享的存储,这样每个服务就是无状态的了。

可以使用mysql来存储,也可以使用k-v存储例如redis。我在自己的业务中就采用了redis来存储唯一key。
避免不必要的查询

并不是所有的请求都是重复的,生产环境下可能99%的请求都不是重复请求。如果每个请求在执行前都要去查询下唯一ID是否存在,可能会带来不必要的性能消耗。

如果你使用mysql来存储唯一ID,那么可以直接进行insert,通过结果来判断是否插入记录成功,如果不成功则证明ID已经存在:

insert into … values … on DUPLICATE KEY UPDATE …

而如果使用的是redis,也可以使用redis的setEx,设置成功则证明key不存在,否则key存在说明是重复请求。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容